Petter Mostad Applied Mathematics and Statistics Chalmers and GU

MVE550 Stochastic Processes and Bayesian Inference

Trial exam autumn 2018 Allowed aids: Chalmers-approved calculator. Total number of points: 30. To pass, at least 12 points are needed

Figure 1: The chain for question 1.

- 1. (4 points) Consider the discrete-time Markov chain with state space {1, 2, 3} and transition probabilities given in Figure 1.
 - (a) What is the limiting distribution for this chain?
 - (b) Write down its transition matrix, and compute its fundamental matrix F.
 - (c) If a chain starts in state 1, what is the expected number of steps it will be in state 3?
- 2. (4 points) Consider an ergodic discrete-time Markov chain with a finite state space, transition matrix $P = [P_{ij}]$, and stationary distribution *v*.
 - (a) If we simulate k independent Markov chains, with each chain having a different starting value at X_0 , what is the probability that all chains are in the same state after n steps, as $n \to \infty$?

- (b) Describe a way to set up the simulation so that each chain is still a realization from the Markov chain with the given transition matrix, and each chain starts with a different starting value, but the probability that all chains are in the same state after *n* steps approaches 1 as *n* → ∞.
- (c) Describe a type of sampling using the simulation method of (b), and explain why this is useful in this sampling type.
- 3. (3 points) Let X be a random variable with values in the set $\{0, 1, 2, ...\}$ and let G(s) be its probability generating function. The variance of X can be expressed in terms of derivatives of G(s) evaluated at specific values for s. Derive the correct formula.
- 4. (4 points) Assume $\{N_t\}_{t\geq 0}$ is a Poisson process with parameter λ . Assume each arrival is independently marked with M (with probability p) or with F (with probability 1 p). Let $N_t^{(M)}$ and $N_t^{(F)}$ be the number of events of type M or F, respectively, in the interval [0, t]. Prove that $N_t^{(M)}$ and $N_t^{(F)}$ are independent random variables and derive their distributions.
- 5. (5 points) Define a discrete-time continuous-valued Markov chain X_0, X_1, X_2, \ldots , by defining $X_0 \sim \text{Normal}(0, 1)$ and for $k = 1, 2, \ldots$,

$$X_k \sim \operatorname{Normal}(aX_{k-1}, 1)$$

where *a* is a real parameter.

- (a) Assume we use the prior $a \sim \text{Normal}(1, 1)$ for a. Find the posterior distribution for a given observations x_0 and x_1 of X_0 and X_1 , respectively.
- (b) Prove that the posterior for *a* given observations of X_0, X_1, \ldots, X_k is normal. You do not need to derive the parameters of the distribution.
- 6. (5 points) Consider a continuous-time Markov chain on the state space {1, 2, 3, 4}. The transition rates between the states are indicated in the transition rate graph in Figure 2.
 - (a) Is this chain ergodic? Why/why not?
 - (b) Write down the (infinitesimal) generator matrix Q for this chain.
 - (c) Let $v = (v_1, v_2, v_3, v_4)$ be the probability vector representing the staionary distribution for the continuous-time Markov chain. Write down four linear equations that the numbers v_1, v_2, v_3, v_4 need to satisfy, and which determine these numbers uniquely. (You do not need to solve the equations).
 - (d) Write down the transition matrix for the embedded Markov chain.
 - (e) Let $w = (w_1, w_2, w_3, w_4)$ be the probability vector representing the stationary distribution for the discrete embedded Markov chain. Write down four linear equations that the numbers w_1, w_2, w_3, w_4 need to satisfy, and which determine these numbers uniquely. (You do not need to solve the equations).

Figure 2: The chain for question 6.

- 7. (5 points) Assume $\{B_t\}_{t\geq 0}$ is the Brownian motion stochastic process.
 - (a) Find the distribution of $B_1 + B_2 + B_3$.
 - (b) Give the definition of a Gaussian process (as defined in Dobrow).
 - (c) Let a > 0. For $n = 1, 2, ..., let M_n$ be the event consisting of those t > 0 such that there exists $t_1 < t_2 < \cdots < t_n < t$ with $B_{t_i} = a$ for i = 1, ..., n. Let T_n be the largest t smaller than or equal to all $t \in M_n$. Compute the distribution of $T_{100} T_1$.

Appendix: Some probability distributions

The Beta distribution

If $x \ge 0$ has a Beta(α, β) distribution with $\alpha > 0$ and $\beta > 0$ then the density is

$$\pi(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}.$$

The Binomial distribution

If $x \in \{0, 1, 2, ..., n\}$ has a Binomial(n, p) distribution, with *n* a positive integer and $0 \le p \le 1$, then the probability mass function is

$$\pi(x \mid n, p) = \binom{n}{x} p^{x} (1-p)^{n-x}.$$

The Exponential distribution

If $x \ge 0$ has an Exponential(λ) distribution with $\lambda > 0$ as parameter, then the density is

$$\pi(x \mid \lambda) = \lambda \exp(-\lambda x)$$

and the cumulative distribution function is

$$F(x) = 1 - \exp(-\lambda x).$$

The Gamma distribution

If x > 0 has a Gamma(α, β) distribution, with $\alpha > 0$ and $\beta > 0$, then the density is

$$\pi(x \mid \alpha\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x).$$

The Normal distribution

If the real x has a Normal distribution with parameters μ and σ^2 , its density is given by

$$\pi(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

The Poisson distribution

If $x \in \{0, 1, 2, ...\}$ has a Poisson(λ) distribution, with $\lambda > 0$, then the probability mass function is

$$e^{-\lambda}\frac{\lambda^{x}}{x!}.$$