Petter Mostad Applied Mathematics and Statistics Chalmers and GU

MVE550 Stochastic Processes and Bayesian Inference

Exam April 24 2019, 14:00 - 18:00 Allowed aids: Chalmers-approved calculator. Total number of points: 30. To pass, at least 12 points are needed There is an appendix containing information about some probability distributions. Unless explicitly allowed, an answer is not complete without a supporting computation or argument.

- 1. (6 points) In the context of discrete time discrete state space time-homogeneous Markov chains:
 - (a) What is a regular transition matrix?
 - (b) What is a communication class, and what does it mean that a communcation class is closed?
 - (c) What does it mean that a state *j* is transient?
 - (d) What does it mean that a state *j* is positive recurrent?
 - (e) If the state space is finite, what does it mean for the Markov chain to be ergodic?
 - (f) If π is a stationary distribution for the Markov chain, what does it mean that it is time reversible?
- 2. (4 points) Assume $x \mid \lambda \sim \text{Exponential}(\lambda)$, so that x has an Exponential distribution with rate λ
 - (a) Assume the prior is $\lambda \mid \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$ for some parameters $\alpha > 0$ and $\beta > 0$. Compute the posterior distribution $\lambda \mid x$ and find its name and parameters.
 - (b) Consider a Poisson process with parameter λ , and use as an improper prior for λ the function $\pi(\lambda) \propto 1/\lambda$. Assuming that the three first waiting times for observations in the Poisson process were 1.2, 1.7, and 0.9, find the posterior distribution for λ .
- 3. (5 points) Consider the discrete time Markov chain whose transition graph is illustrated in Figure 1.
 - (a) Write down the transition matrix.
 - (b) Compute the fundamental matrix F.
 - (c) Given that the chain starts in state 1, what is the probability that it will be absorbed in state 4?
- 4. (2 points) Formulate the strong law of large numbers for Markov chains.

Figure 1: The graph for question 3.

- 5. (4 points) A machine component can have one of three states: A, B, or C. It stays in each state for an exponentially distributed time length, with expectation 1/2, 1/3, and 1/4 minutes for the states A, B, and C, respectively. When it changes from state A, it goes into state B with 60% probability or state C with 40% probability. When it changes from state B, it goes to state A with 90% probability; otherwise it goes to state C. When it changes from state that the component spends in state A.
- 6. (3 points) Explain what a Hidden Markov Model is, in particular describe what are the hidden variables and what are the observed variables in such a model. *Outline* a computational algorithm for finding the marginal posterior distribution for one of the hidden variables given all the observed variables.
- 7. (4 points) Assume two types of requests arrive at a computer server: Requests of type A arrive as a Poisson process with parameter λ_A and requests of type B arrive as an independent Poisson process with parameter λ_B .
 - (a) If $\lambda_A = 3$ and $\lambda_B = 2$, what is the probability that within the first time unit, exactly three requests of type *A* and exactly 4 requests of type *B* will arrive?
 - (b) For general λ_A and λ_B , what is the formula for the probability that the sequence of the first 7 requests will be *A*, *B*, *B*, *A*, *B*, *B*, *A*?

8. (2 points) Let B_t and W_t denote independent Brownian motions, and define, for $t \ge 0$ and real *a* and *b*,

$$X_t = a + b(B_t + W_{3+t}).$$

Find all pairs (a, b) such that $\{X_t\}_{t \ge 0}$ is Brownian motion; the answer may depend on W_3 .

Appendix: Some probability distributions

The Bernoulli distribution

If $x \in \{0, 1\}$ has a Bernoulli distribution with parameter $0 \le p \le 1$, then the probability mass function is

$$\pi(x) = p^x (1-p)^{1-x}.$$

We write $x \mid p \sim \text{Bernoulli}(p)$ and $\pi(x \mid p) = \text{Bernoulli}(x; p)$.

The Beta distribution

If $x \in [0, 1]$ has a Beta distribution with parameters with $\alpha > 0$ and $\beta > 0$ then the density is

$$\pi(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}.$$

We write $x \mid \alpha, \beta \sim \text{Beta}(\alpha, \beta)$ and $\pi(x \mid \alpha, \beta) = \text{Beta}(x; \alpha, \beta)$.

The Beta-Binomial distribution

If $x \in \{0, 1, 2, ..., n\}$ has a Beta-Binomial distribution, with *n* a positive integer and parameters $\alpha > 0$ and $\beta > 0$, then the probability mass function is

$$\pi(x \mid n, \alpha, \beta) = \binom{n}{x} \frac{\Gamma(x + \alpha)\Gamma(n - x + \beta)\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(n + \alpha + \beta)}$$

We write $x \mid n, \alpha, \beta \sim \text{Beta-Binomial}(n, \alpha, \beta)$ and $\pi(x \mid n, \alpha, \beta) = \text{Beta-Binomial}(x; n, \alpha, \beta)$.

The Binomial distribution

If $x \in \{0, 1, 2, ..., n\}$ has a Binomial distribution, with *n* a positive integer and $0 \le p \le 1$, then the probability mass function is

$$\pi(x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}.$$

We write $x \mid n, p \sim \text{Binomial}(n, p)$ and $\pi(x \mid n, p) = \text{Binomial}(x; n, p)$.

The Dirichlet distribution

If $x = (x_1, x_2, ..., x_n)$ has a Dirichlet distribution, with $x_i \ge 0$ and $\sum_{i=1}^n x_i = 1$ and with parameters $\alpha = (\alpha_1, ..., \alpha_n)$ with $\alpha_1 > 0, ..., \alpha_n > 0$, then the density function is

$$\pi(x \mid \alpha) = \frac{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_n)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\cdots\Gamma(\alpha_n)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \cdots p_n^{\alpha_n - 1}.$$

We write $x \mid \alpha \sim \text{Dirichlet}(\alpha)$ and $\pi(x \mid \alpha) = \text{Dirichlet}(x; \alpha)$.

The Exponential distribution

If $x \ge 0$ has an Exponential distribution with parameter $\lambda > 0$, then the density is

$$\pi(x \mid \lambda) = \lambda \exp(-\lambda x)$$

We write $x \mid \lambda \sim \text{Exponential}(\lambda)$ and $\pi(x \mid \lambda) = \text{Exponential}(x; \lambda)$. The expectation is $1/\lambda$ and the variance is $1/\lambda^2$.

The Gamma distribution

If x > 0 has a Gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ then the density is

$$\pi(x \mid \alpha\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x).$$

We write $x \mid \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$ and $\pi(x \mid \alpha, \beta) = \text{Gamma}(x; \alpha, \beta)$.

The Normal distribution

If the real x has a Normal distribution with parameters μ and σ^2 , its density is given by

$$\pi(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

We write $x \mid \mu, \sigma^2 \sim \text{Normal}(\mu, \sigma^2)$ and $\pi(x \mid \mu, \sigma^2) = \text{Normal}(x; \mu, \sigma^2)$.

The Poisson distribution

If $x \in \{0, 1, 2, ...\}$ has Poisson distribution with parameter $\lambda > 0$ then the probability mass function is

$$e^{-\lambda}\frac{\lambda^{x}}{x!}.$$

We write $x \mid \lambda \sim \text{Poisson}(\lambda)$ and $\pi(x \mid \lambda) = \text{Poisson}(x; \lambda)$.