Petter Mostad
Applied Mathematics and Statistics
Chalmers

Suggested solutions for MVE550 Stochastic Processes and Bayesian Inference Exam April 242019

1. (a) A regular transition matrix P is a transition matrix such that there is an $n>0$ such that P^{n} is a positive matrix: A positive matrix is one where all the elements are positive.
(b) A communication class is a subset S of states such that, for all $i, j \in S$, there are $n>0$ and $m>0$ such that $P_{i j}^{m}>0$ and $P_{i j}^{n}>0$, while for any pair $i \in S$ and $j \notin S$, this is not the case. A closed communication class is a communication class with a zero probability of ever leaving the class.
(c) A state j is transient if the probability that a chain starting at j will ever return to j is less than 1.
(d) A state j is positive recurrent if the expected number of steps for a chain to return to j if it starts at j is finite.
(e) A finite state space Markov chain is ergodic if it is irreducible and aperiodic.
(f) Time reversibility means that, for all states i and $j, \pi_{i} P_{i j}=\pi_{j} P_{j i}$.
2. (a) Using Bayes theorem we get

$$
\begin{aligned}
& \pi(\lambda \mid x) \propto_{\lambda} \\
& \pi(x \mid \lambda) \pi(\lambda) \\
& \propto_{\lambda} \\
& \propto_{\lambda} \\
& \lambda \cdot \exp (-\lambda x) \cdot \lambda^{\alpha-1} \cdot \exp (-\beta \lambda) \\
& \propto_{\lambda} \\
& \lambda^{\alpha} \cdot \exp (-(\beta+x) \lambda) \\
& \propto_{\lambda} \\
& \operatorname{Gamma}(\lambda ; \alpha+1, \beta+x)
\end{aligned}
$$

In other words, the posterior distribution is a Gamma distribution with parameters $\alpha+1$ and $\beta+x$.
(b) The prior corresponds to a $\operatorname{Gamma}(0,0)$ distribution. The posterior is obtained by updating the Gamma distribution as in (a) with the data given, resulting in the posterior

$$
\operatorname{Gamma}(3,1.2+1.7+0.9)=\operatorname{Gamma}(3,3.8)
$$

3. (a) We get the transition matrix

$$
P=\left[\begin{array}{cccc}
0.1 & 0.3 & 0.6 & 0 \\
0.1 & 0.2 & 0.3 & 0.4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) We get

$$
Q=\left[\begin{array}{ll}
0.1 & 0.3 \\
0.1 & 0.2
\end{array}\right]
$$

and so

$$
\begin{aligned}
& F=(I-Q)^{-1}=\left[\begin{array}{cc}
0.9 & -0.3 \\
-0.1 & 0.8
\end{array}\right]^{-1}=\frac{1}{0.9 \cdot 0.8-0.3 \cdot 0.1}\left[\begin{array}{cc}
0.8 & 0.3 \\
0.1 & 0.9
\end{array}\right] \\
&=\frac{1}{0.69}\left[\begin{array}{ll}
0.8 & 0.3 \\
0.1 & 0.9
\end{array}\right]=\left[\begin{array}{ll}
1.1594 & 0.4348 \\
0.1449 & 1.3043
\end{array}\right] .
\end{aligned}
$$

(c) We have

$$
R=\left[\begin{array}{cc}
0.6 & 0 \\
0.3 & 0.4
\end{array}\right]
$$

and thus

$$
F R=\frac{1}{0.69}\left[\begin{array}{cc}
0.8 & 0.3 \\
0.1 & 0.9
\end{array}\right]\left[\begin{array}{cc}
0.6 & 0 \\
0.3 & 0.4
\end{array}\right]=\frac{1}{0.69}\left[\begin{array}{cc}
0.57 & 0.12 \\
0.33 & 0.36
\end{array}\right] .
$$

Thus the probability for a process that starts in state 1 to be absorbed in state 4 is $\frac{0.12}{0.69}=0.1739$.
4. Assume $X_{0}, X_{1}, \ldots, X_{n}, \ldots$ is an ergodic Markov chain with stationary distribution π. Let r be a bounded real-valued function. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} r\left(X_{i}\right)=\mathrm{E}(r(X))
$$

where X is a random variable with distribution π.
5. The holding time parameters are $q=(2,3,4)$. The embedded chain transition matrix is

$$
\tilde{P}=\left[\begin{array}{ccc}
0 & 0.6 & 0.4 \\
0.9 & 0 & 0.1 \\
1 & 0 & 0
\end{array}\right]
$$

Thus the generator matrix becomes

$$
Q=\left[\begin{array}{ccc}
-2 & 1.2 & 0.8 \\
2.7 & -3 & 0.3 \\
4 & 0 & -4
\end{array}\right]
$$

The linear system $\pi Q=0$ gives

$$
\begin{aligned}
-2 \pi_{1}+2.7 \pi_{2}+4 \pi_{3} & =0 \\
1.2 \pi_{1}-3 \pi_{2} & =0 \\
0.8 \pi_{1}+0.3 \pi_{2}-4 \pi_{3} & =0
\end{aligned}
$$

with solution $\pi=\frac{1}{163}(100,40,23)$. Thus, the long-term proportion of time that the component spends in state A is $100 / 163=0.6135$.
6. A hidded Markov model consists of a Markov chain $X_{1}, X_{2}, \ldots, X_{n}$ of "hidden" random variables, and another sequence Y_{1}, \ldots, Y_{n} of variables such that the distribution of Y_{i} only depends on X_{i}, and possibly on Y_{i-1}. Thes latter variables are the "observed" variables. If the values of the variables Y_{i} are indeed observed, the posterior distribution for one of the hidden variables, say X_{i} can be found as follows: In a "Forward" part of the algorithm, for $j=1, \ldots, i$, the posterior for X_{j} given Y_{1}, \ldots, Y_{j} is found in a recursive algorithm. In a "Backward" part of the algorithm, for $j=n, \ldots, i$, the likelihoods for X_{j} given the data Y_{j}, \ldots, Y_{n} are found in a recursive algorithm. Then the two are put together to find the marginal posterior for X_{i}.
7. (a) The events that three requests of type A arrive during the time unit and that four requests of type B arrive during the time unit are independent, and the probability of both can be computed using the Poisson probability mass function. Thus the answer is

$$
e^{-\lambda_{A}} \frac{\lambda_{A}^{3}}{3!} e^{-\lambda_{B}} \frac{\lambda_{B}^{4}}{4!}=e^{-3} \frac{3^{3}}{3!} e^{-2} \frac{2^{4}}{4!}=3 e^{-5}=0.02021384
$$

(b) The probability of the first event being a request of type A or B is $\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}$, respectively $\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}$. As the successive events are independent, the probability asked for is

$$
\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{3}\left(\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{4}=\frac{\lambda_{A}^{3} \lambda_{B}^{4}}{\left(\lambda_{A}+\lambda_{B}\right)^{7}}
$$

8. We have

$$
\mathrm{E}\left(X_{t}\right)=a+b\left(\mathrm{E}\left(B_{t}\right)+\mathrm{E}\left(W_{3+t}\right)\right)=a+b\left(0+W_{3}\right)
$$

Setting this to zero gives $a+b W_{3}=0$. Further,

$$
\operatorname{Var}\left(X_{t}\right)=b^{2}\left(\operatorname{Var}\left(B_{t}\right)+\operatorname{Var}\left(W_{3+t}\right)\right)=b^{2}(t+t)
$$

and setting this to t gives $2 b^{2}=1$. Thus we must have $b=\frac{1}{\sqrt{2}}$ and $a=-\frac{1}{\sqrt{2}} W_{3}$. On the other hand, with these values,

$$
a+b\left(B_{t}+W_{3+t}\right)=\frac{1}{\sqrt{2}}\left(B_{t}+\left(W_{3+t}-W_{3}\right)\right)
$$

fulfills all criteria for a Brownian motion.

