Petter Mostad
Applied Mathematics and Statistics
Chalmers

Suggested solutions for MVE550 Stochastic Processes and Bayesian Inference Exam August 192019

1. (a) The communication classes are: $\{1,2,3\}$ (closed), $\{4,5\}$ (open), $\{6,7,8\}$ (closed).
(b) The recurrent states are $1,2,3,6,7,8$. The transient states are 4,5 .
(c) For the transition probabilities to add up to 1 , the subset must correspond to a closed communication class. The communication class $\{6,7,8\}$ corresponds to a Markov chain, but it is not ergodic, as it has period 3 . The communication class $\{1,2,3\}$ is however aperiodic and thus corresponds to an ergodic Markov chain.
(d) As the states 1,2,3 correspond to a closed communication class, we may consider only these. The transition matrix becomes

$$
T=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Writing $p=\left(p_{1}, p_{2}, p_{3}\right)$ for the unique limiting distribution, using $p T=p$ and that p is a probability vector gives

$$
\begin{aligned}
\frac{1}{2} p_{1}+p_{3} & =p_{1} \\
\frac{1}{2} p_{1} & =p_{2} \\
p_{2} & =p_{3} \\
p_{1}+p_{2}+p_{3} & =1
\end{aligned}
$$

which has the solution $p=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$ so that, in the long run, the probability of being at 2 is $\frac{1}{4}$.
(e) One way to solve this is to use the theorem about Finite Irreducible Markov chains in Dobrow, which states that the given limit is equal to 1 divided by the expected return time to the node 7 given that one starts at node 7 . From the transition graph, this return time is exactly 3 , so the answer is $1 / 3$.
More directly, one may see from the transition graph that

$$
T_{8,7}^{m}=\left\{\begin{array}{ll}
0 & m \equiv 0(\bmod 3) \\
0 & m \equiv 1(\bmod 3) \\
1 & m \equiv 2(\bmod 3)
\end{array} .\right.
$$

From this it is easy to prove that $\lim _{n \rightarrow \infty} \sum_{m=0}^{n-1} T_{8,7}^{m}=\frac{1}{3}$.
2. (a) We get for the densities

$$
\pi(p \mid y) \propto_{p} \pi(y \mid p) \pi(p) \propto_{p} p^{y}(1-p)^{r}
$$

This is proportional to a $\operatorname{Beta}(y+1, r+1)$ density. Thus the posterior density for p given an observation y is a Beta distribution with parameters $y+1$ and $r+1$.
(b) We may use the following computation:

$$
\pi(y)=\frac{\pi(y \mid p) \pi(p)}{\pi(p \mid y)}=\frac{\binom{y+r-1}{y} p^{y}(1-p)^{r}}{\frac{\Gamma(y+1+r+1)}{\Gamma(y+1) \Gamma(r+1)} p^{y}(1-p)^{r}}=\binom{y+r-1}{y} \frac{\Gamma(y+1) \Gamma(r+1)}{\Gamma(y+r+2)}
$$

resulting in, if you like,

$$
\pi(y)=\frac{(y+r-1)!y!r!}{y!(r-1)!(y+r+1)!}=\frac{r}{(y+r+1)(y+r)} .
$$

3. (a) To get a frequentist estimate, you count the number of transitions from each state to each other state, obtaining

	A	B	C
A	1	1	2
B	3	2	2
C	1	3	1

Dividing by the sums of the rows, you get the frequencies, and the estimate \hat{P} for the transition matrix P :

$$
\hat{P}=\left[\begin{array}{lll}
1 / 4 & 1 / 4 & 1 / 2 \\
3 / 7 & 2 / 7 & 2 / 7 \\
1 / 5 & 3 / 5 & 1 / 5
\end{array}\right] .
$$

(b) The posterior also becomes a product of Dirichlet distributions; specifically the first, second, and third rows of P get the distributions $\operatorname{Dirichlet}(1+1,1+1,1+2)$, $\operatorname{Dirichlet}(1+$ $3,1+2,1+2)$, and $\operatorname{Dirichlet}(1+1,1+3,1+1)$, respectively. The expectation of this posterior becomes

$$
\mathrm{E}(P)=\left[\begin{array}{ccc}
2 / 7 & 2 / 7 & 3 / 7 \\
4 / 10 & 3 / 10 & 3 / 10 \\
1 / 4 & 2 / 4 & 1 / 4
\end{array}\right]
$$

4. (a) X_{0} can be chosen as any random variable on the state space. The transition from X_{s} to X_{s+1} is constructed as follows: If X_{s} is in state i, a proposal state j is generated using T. Compute the acceptance probability

$$
a=\min \left(1, \frac{p_{j} T_{j i}}{p_{i} T_{i j}}\right)
$$

and set X_{s+1} equal to j with probability a and to i with probability $1-a$.
(b) Let P be the transition matrix for the chain X_{0}, X_{1}, \ldots. We would like to prove that $p_{i} P_{i j}=p_{j} P_{j i}$ for all states i and j. Assume first that $\frac{p_{p} T_{j i}}{p_{i} T_{i j}}<1$. Then $\frac{p_{i} T_{i j}}{p_{j} T_{j i}}>1$ and we get

$$
p_{i} P_{i j}=p_{i} T_{i j} \frac{p_{j} T_{j i}}{p_{i} T_{i j}}=p_{j} T_{j i}=p_{j} P_{j i} .
$$

Similarly, if $\frac{p_{j} T_{j i}}{p_{i} T_{i j}} \geq 1$ we get $\frac{p_{i} T_{i j}}{p_{j} T_{i j}} \leq 1$ and

$$
p_{i} P_{i j}=p_{i} T_{i j}=p_{j} T_{j i} \frac{p_{i} T_{i j}}{p_{j} T_{j i}}=p_{j} P_{j i} .
$$

(c) To prove that X_{0}, X_{1}, \ldots, has p as a limiting distribution, we need that the chain is ergodic. This would mean that the chain must be irreducible, aperiodic, and positive recurrent.
5. (a) A Branching process is a discrete time Markov process Z_{0}, Z_{1}, \ldots, with the nonnegative integers as state space, satisfying the following: For each i, we have

$$
Z_{i+1}=\sum_{j=1}^{Z_{i}} X_{j}
$$

where $X_{1}, X_{1}, \ldots, X_{Z_{i}}$ are drawn independently from a fixed offspring distribution.
(b) Let μ be the expectation of the offspring distribution. Then the branching process is critical, supercritical, and subcritical if $\mu=1, \mu>1$, and $\mu<1$, respectively.
(c) We get

$$
G(s)=\mathrm{E}\left(s^{X}\right)=\sum_{k=0}^{\infty} s^{k} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{(s \lambda)^{k}}{k!}=e^{-\lambda} e^{s \lambda}=e^{(s-1) \lambda} .
$$

(d) We know that the extinction probability is the smallest positive root of the equation $s=G(s)$, so it is the smallest positive s such that

$$
s=e^{(s-1) \lambda}
$$

When $\lambda>1$, we see that there is exactly one s with $0<s<1$ such that

$$
\log (s)=\lambda(s-1)
$$

6. (a) Gibbs sampler can be seen as a variant of the Metropolis-Hastings algorithm. If one is trying to obtain an approximate sample from a joint distribution on variables $Y_{1}, Y_{2}, \ldots, Y_{n}$, it consists of cycling through each of them, simulating a new value from the conditional distribution given the values of the other variables.
(b) Perfect sampling is a way to run a Markov chain Monte Carlo sampling so that after a finite number of steps one is guaranteed that the sample is indeed from the limiting distribution. Essentially, one makes sure one couples transitions in such a way that at a certain point, one can ensure that all simulations would have ended up with the current state, no matter at which state they started.
(c) We can write

$$
\begin{aligned}
e^{(s+t) A} & =\sum_{k=0}^{\infty} \frac{1}{k!}((s+t) A)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!}(s+t)^{k} A^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} s^{j} t^{k-j} A^{k} \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} s^{j} t^{k-j} A^{j} A^{k-j} .
\end{aligned}
$$

Rearranging the terms and setting $u=j, v=k-j$, this is equal to

$$
\sum_{u=0}^{\infty} \sum_{v=0}^{\infty} \frac{1}{u!} \frac{1}{v!} s^{u} t^{v} A^{u} A^{v}=\left(\sum_{u=0}^{\infty} \frac{1}{u!}(u A)^{k}\right)\left(\sum_{v=0}^{\infty} \frac{1}{v!}(t A)^{v}\right)=e^{s A} e^{t A} .
$$

7. (a) Ordering the states as "OK", "stressed", and "broken", we get

$$
Q=\left[\begin{array}{ccc}
-0.001 & 0.001 & 0 \\
0.5 & -0.6 & 0.1 \\
0 & 0 & 0
\end{array}\right]
$$

(b) The macine leaves the stressed state according to a Poisson process with rate $0.1+$ $0.5=0.6$. Thus the expected time in this state is $1 / 0.6$.
(c) Writing the generator matrix in its canonical form, so that we order the states "broken", "OK", and "stressed", we get

$$
Q^{\prime}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -0.001 & 0.001 \\
0.1 & 0.5 & -0.6
\end{array}\right]
$$

We then get for the fundamental matrix

$$
\begin{aligned}
F & =-V^{-1}=-\left[\begin{array}{cc}
-0.001 & 0.001 \\
0.5 & -0.6
\end{array}\right]^{-1}=-\frac{1}{0.6 \cdot 0.001-0.001 \cdot 0.5}\left[\begin{array}{cc}
-0.6 & -0.001 \\
-0.5 & -0.001
\end{array}\right] \\
& =10000\left[\begin{array}{cc}
0.6 & 0.001 \\
0.5 & 0.001
\end{array}\right]=\left[\begin{array}{ll}
6000 & 10 \\
5000 & 10
\end{array}\right] .
\end{aligned}
$$

Thus, if the machine starts out OK, the expected time in the OK state will be 6000 hours and in the stressed state 10 hours, for a total of 6010 hours before it is expected to break.

