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The communication classes are: {1, 2, 3} (closed), {4, 5} (open), {6, 7, 8} (closed).
The recurrent states are 1, 2, 3, 6, 7, 8. The transient states are 4, 5.

For the transition probabilities to add up to 1, the subset must correspond to a closed
communication class. The communication class {6, 7, 8} corresponds to a Markov
chain, but it is not ergodic, as it has period 3. The communication class {1,2, 3} is
however aperiodic and thus corresponds to an ergodic Markov chain.

As the states 1, 2, 3 correspond to a closed communication class, we may consider
only these. The transition matrix becomes

1/2 1/2 0
T=({0 0 1].
1 0 O

Writing p = (p1, p2, p3) for the unique limiting distribution, using pT = p and that p
is a probability vector gives
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pr+pr+py = 1

which has the solution p = (%, i, i) so that, in the long run, the probability of being
at 2 is i.

One way to solve this is to use the theorem about Finite Irreducible Markov chains in
Dobrow, which states that the given limit is equal to 1 divided by the expected return
time to the node 7 given that one starts at node 7. From the transition graph, this
return time is exactly 3, so the answer is 1/3.

More directly, one may see from the transition graph that

0 m = 0(mod 3)
T§f’7 =:0 m=1(mod3).
1 m=2(mod 3)

From this it is easy to prove that lim, . Yo 7ot = 1.
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We get for the densities

n(ply) e, n(y | p)r(p) o<, p’(1 - p).

This is proportional to a Beta(y + 1,7 + 1) density. Thus the posterior density for p
given an observation y is a Beta distribution with parameters y + 1 and r + 1.

We may use the following computation:
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resulting in, if you like,
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To get a frequentist estimate, you count the number of transitions from each state to
each other state, obtaining
A|B|C
All1]1]2
B|3|2]|2
C|1|3]1

Dividing by the sums of the rows, you get the frequencies, and the estimate P for the
transition matrix P:
1/4 1/4 1/2
P=\3/7 2/7 2/7} :
1/5 3/5 1/5

The posterior also becomes a product of Dirichlet distributions; specifically the first,
second, and third rows of P get the distributions Dirichlet(1+1, 1+1, 1+2), Dirichlet(1+
3,1+2,1+2), and Dirichlet(1 + 1,1 + 3, 1 + 1), respectively. The expectation of this
posterior becomes

E(P)=1{4/10 3/10 3/10

2/7 2/7  3]7
1/4 2/4 1/4}

X, can be chosen as any random variable on the state space. The transition from X to
X1 1s constructed as follows: If X is in state i, a proposal state j is generated using
T. Compute the acceptance probability

pjTji)

a= min(l,
piTi;

and set X, equal to j with probability a and to i with probability 1 — a.



(b) Let P be the transition matrix for the chain X, X;,.... We would like to prove that
piPij = p;Pj; for all states i and j. Assume first that % < 1. Then p—;’ > 1 and we
) pilij pilji
ge

piPij = piTijT =pTji=p;Pj.

.. . iT i piTij
Similarly, if 22£ > 1 we get 222 < 1 and
Y, rili; — g riTji —

piPij = piTij = PjTjipi—Tij = pjPji.
piT;i
(c) To prove that Xy, Xy, ..., has p as a limiting distribution, we need that the chain is
ergodic. This would mean that the chain must be irreducible, aperiodic, and positive

recurrent.

5. (a) A Branching process is a discrete time Markov process Zy, Z, ..., with the non-
negative integers as state space, satisfying the following: For each i, we have

Zi
Zi+1 = Z Xj
=1

where X;, X, ..., Xz are drawn independently from a fixed offspring distribution.

(b) Let u be the expectation of the offspring distribution. Then the branching process is
critical, supercritical, and subcritical if u = 1, u > 1, and u < 1, respectively.

(c) We get

(o0

/1k s yl k
G(s) = B(s¥) = Z RS EAp S L A O )
k! k!
k=0 k=0
(d) We know that the extinction probability is the smallest positive root of the equation
s = G(s), so it is the smallest positive s such that

s = WD,

When A > 1, we see that there is exactly one s with 0 < s < 1 such that

log(s) = A(s — 1).

6. (a) Gibbs sampler can be seen as a variant of the Metropolis-Hastings algorithm. If
one is trying to obtain an approximate sample from a joint distribution on variables
Y,Y,,...,Y,, it consists of cycling through each of them, simulating a new value
from the conditional distribution given the values of the other variables.



(b) Perfect sampling is a way to run a Markov chain Monte Carlo sampling so that after
a finite number of steps one is guaranteed that the sample is indeed from the limiting
distribution. Essentially, one makes sure one couples transitions in such a way that
at a certain point, one can ensure that all simulations would have ended up with the
current state, no matter at which state they started.

(c) We can write
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Rearranging the terms and setting u = j, v = k — J, this is equal to
SEN uvuv_ool kool v _ sA tA
Z_;Z_;E;S FA“A (Z(;;(MA) ](Z(;J(m) )—e e,

(a) Ordering the states as “OK”, “stressed”, and “broken”, we get

0.5 -0.6 0.1].
0 0 0

-0.001 0.001 O
0=

(b) The macine leaves the stressed state according to a Poisson process with rate 0.1 +
0.5 = 0.6. Thus the expected time in this state is 1/0.6.

(c) Writing the generator matrix in its canonical form, so that we order the states “bro-
ken”, “OK”, and “stressed”, we get

0 0 0
Q' =|0 -0.001 0.001].
0.1 05 -0.6

We then get for the fundamental matrix

Foo o_ylo_ —-0.001 0.001 “__ 1 -0.6 -0.001
B B 05 -06| ~ 0.6-0.001-0.001-0.5[-0.5 -0.001
0.6 0.001 6000 10
- 10000[0.5 0.001]‘[5000 10]'

Thus, if the machine starts out OK, the expected time in the OK state will be 6000
hours and in the stressed state 10 hours, for a total of 6010 hours before it is expected
to break.



