CHALMERS

Statistical Image Analysis Lecture 10: Image classification

David Bolin University of Gothenburg

> Gothenburg May 7, 2018

Title page

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG

CHALMERS

Image classification

- Training images $\mathbf{x}_1, \ldots, \mathbf{x}_N$ with corresponding labels z_1, \ldots, z_N .
- Extract d features from each image, giving data $\mathbf{y}_1, \dots, \mathbf{y}_N.$
- Goal: train a classifier on the training data, and use it to classify new images.
- LDA and QDA: Fit a Gaussian mixture model to the data and use posterior probabilities to classify.
- KNN approach: Non-parametric approach were we for a new image compare the features to the training data and classify by a majority vote of its neighbors. The image is assigned to the class most common among its k nearest neighbors.

UNIVERSITY OF GOTHENBURG Scale invariant moments

UNIVERSITY OF GOTHENBURG KNN results

UNIVERSITY OF GOTHENBURG

CHALMERS

CHALMERS

Scale invariant moments

UNIVERSITY OF GOTHENBURG KNN results

UNIVERSITY OF GOTHENBURG CHALMERS

Title page

CHALMERS

CHALMERS

Title	page
-------	------

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG	
Comparison	

Comparison

Title page

UNIVERSITY OF GOTHENBURG CHALMERS SVM results

CHALMERS

David Bolin

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG CHALMERS Confusion matrix for the SVM with Gaussian kernel

Confusion matrix for 5-fold crossvalidation

Title page

David Bolin

CHALMERS