
Statistical Image Analysis

Lecture 11: Neural nets

David Bolin
University of Gothenburg

Gothenburg
May 14, 2018

Feedforward neural nets

Input data x

1

, . . . , xp. Output probabilities for M classes. Model

z

(k)
l = w

(k�1)

l0 +

p
k�1X

j=1

w

(k�1)

lj ↵

(k�1)

j := W

(k�1)

↵

(k�1)

↵

(k)
= g

(k)
(z

(k)
)

for k = 1, . . . ,K, where p

1

= p, ↵(1)

= x, and ↵

K defines the
probabilities.

• Where W

(1)

, . . . ,W

(k) are weights.
•
g

(1)

, . . . , g

(K) are non-linear functions.
Common non-linear functions:

• Rectified linear: g(v) = max(0, v).

• Softmax g(vi, v) =
exp(v

i

)P
j

exp(v
j

)

.

Repetition David Bolin

Example for binary classification

Input layer L1 Hidden layer L2 Hidden layer L3 Hidden layer L4 Output layer L5

W

(1)

W

(2)

W

(3)

W

(4)
↵

(1)

↵

(2)

↵

(3)
↵

(4)

↵

(5)

x1

x2

x3

y1

y2

Repetition David Bolin

Parameter estimation

• The neural network defines a nonlinear function f(x,W ) of
the input variables x, depending on the unknown weights
W = {W (1)

,W

(2)

, . . . ,W

(K)}.
• To estimate W , for some input data {xi, yi}ni=1

, we define a
loss-function L(y, f(x,W )) as well as a regularization factor
J(W ) and estimate

ˆ

W = argmin

W

1

n

nX

i=1

L(yi, f(xi,W )) + �J(W )

Simple examples of L and J are
•

Squared loss: L(y, f(x,W )) =

1
2ky � f(x,W )k2.

•
Weight-decay penalty: J(W ) =

P
j,l,k(w

(k)
l,j )

2
.

• We estimate W using gradient-descent.

Repetition David Bolin



Backpropagation

The gradient of L can be estimated using the chain rule.

1 Compute ↵

(k)
l for each layer k and each node l based on the

current estimate of W .
2 For the output layer, compute

�

(K)

l =

@ L

@ z

(K)

l

=

@ L

@ ↵

(K)

l

@ ↵

(K)

l

@ z

(K)

l

=

@ L

@ ↵

(K)

l

ġ

(K)

(K)(z

(K)

l )

3 For k = K � 1, . . . , 2, compute

�

(k)
l =

0

@
p
k+1X

j=1

w

(k)
lj �

(k+1)

j

1

A
ġ

k
(K)(z

(k)
l )

4 Compute @ L

@ w
(k)
lj

= ↵

(k)
j �

(k+1)

l

Repetition David Bolin

Verification for the output layer

Assume squared-loss:

@ L

@ w

(K�1)

lj

=

@

@ w

(K�1)

lj

1

2

MX

j=1

(yj � ↵j)
2

= (yl � ↵l)
@ ↵l

@ w

(K�1)

lj

= (yl � ↵l)
@ g

(K)

(z

(K)

l )

@ w

(K�1)

lj

= (yl � ↵l)
@ g

(K)

(z

(K)

l )

@ z

(K)

l

@ z

(K)

l

@ w

(K�1)

lj

= (yl � ↵l)ġ
k
(K)(z

(k)
l )

| {z }
�
(K)
l

↵

(K�1)

l

Repetition David Bolin

Stochastic gradient descent

To speed up the estimation, it is common to replace the exact
gradient by a stochastic estimate:

• Option 1: Define G(W ) =

1

ns

Pn
i=1

Ji
@ L

@W (k) , where Ji are
independent Be(s) random variables. Then

E(G(W ) =

1

ns

nX

i=1

E(Ji)
@ L

@W

(k)
=

1

n

nX

i=1

@ L

@W

(k)

• Option 2: Divide the training data into k batches and
randomly sample one of the batches in each iteration.

Repetition David Bolin

Convolutional Neural networks

• A CNN assumes that the input data has a lattice structure,
like an image.

• Consists of a special type of layers called convolution layers,
which has three stages:

1 Convolution stage: Convolve each input image with p different

linear filters, with kernels of size q ⇥ q, producing p output

images.

2 Detector stage: Apply a non-linear function to each image.

Typically the rectified linear function g(v) = max(0, v).

3 Pooling stage: For each image, reduce each non-overlapping

block of r ⇥ r pixels to one single value, by for example taking

the largest value in the block.

Input image Output
images

Convolution layer

Convolution stage Detector stage Pooling stage

Repetition David Bolin



Comments

• Using a CNN, we do not need to specify features manually.
• One could view the convolution stage as a regular layer where

most of the weights are zero: A pixel in the output image only
depends on the q ⇥ q nearest pixels in the input image.

• The different nodes share parameters, since we use the same
convolution kernel across the entire image.

• As a result, a convolution layer has pq

2 parameters, which is
much less than a corresponding fully connected layer with
(mn)

2 parameters.
• Since pooling reduces the image size, we can in the next stage

use more filters without increasing the total number of nodes.
• Pooling makes the output less sensitive to small translations of

the input.
• Another variant of pooling is to take the max across different

learned features. This can make the output invariant to other
things, such as rotations.

Repetition David Bolin

Example of a CNN

Input image
256 ⇥ 256

Convolution
layer

64 ⇥ 64 ⇥ 2

Convolution
layer

16 ⇥ 16 ⇥ 8

Convolution
layer

4 ⇥ 4 ⇥ 32

Vectorize
512 ⇥ 1

...

L5

Output
layer

• The first layer has p = 2 filters, the second has p = 4, the
third has p = 4.

• Each pooling stage uses r = 4.
• The final hidden layer is a usual fully connected layer.

Repetition David Bolin


