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Feedforward neural nets
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Common non-linear functions:

• Rectified linear: g(v) = max(0, v).
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Example for binary classification
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Parameter estimation

• The neural network defines a nonlinear function f(x,W ) of
the input variables x, depending on the unknown weights
W = {W (1)

,W

(2)

, . . . ,W

(K)}.
• To estimate W , for some input data {xi, yi}ni=1

, we define a
loss-function L(y, f(x,W )) as well as a regularization factor
J(W ) and estimate

ˆ
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Simple examples of L and J are
•

Squared loss: L(y, f(x,W )) =

1
2ky � f(x,W )k2.

•
Weight-decay penalty: J(W ) =

P
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2
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• We estimate W using gradient-descent.

Repetition David Bolin



Backpropagation

The gradient of L can be estimated using the chain rule.
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Verification for the output layer

Assume squared-loss:
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Stochastic gradient descent

To speed up the estimation, it is common to replace the exact
gradient by a stochastic estimate:

• Option 1: Define G(W ) =

1
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• Option 2: Divide the training data into k batches and
randomly sample one of the batches in each iteration.

Repetition David Bolin

Convolutional Neural networks

• A CNN assumes that the input data has a lattice structure,
like an image.

• Consists of a special type of layers called convolution layers,
which has three stages:

1 Convolution stage: Convolve each input image with p different

linear filters, with kernels of size q ⇥ q, producing p output

images.

2 Detector stage: Apply a non-linear function to each image.

Typically the rectified linear function g(v) = max(0, v).

3 Pooling stage: For each image, reduce each non-overlapping

block of r ⇥ r pixels to one single value, by for example taking

the largest value in the block.

Input image Output
images

Convolution layer

Convolution stage Detector stage Pooling stage
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Comments

• Using a CNN, we do not need to specify features manually.
• One could view the convolution stage as a regular layer where

most of the weights are zero: A pixel in the output image only
depends on the q ⇥ q nearest pixels in the input image.

• The different nodes share parameters, since we use the same
convolution kernel across the entire image.

• As a result, a convolution layer has pq

2 parameters, which is
much less than a corresponding fully connected layer with
(mn)

2 parameters.
• Since pooling reduces the image size, we can in the next stage

use more filters without increasing the total number of nodes.
• Pooling makes the output less sensitive to small translations of

the input.
• Another variant of pooling is to take the max across different

learned features. This can make the output invariant to other
things, such as rotations.
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Example of a CNN

Input image
256 ⇥ 256

Convolution
layer

64 ⇥ 64 ⇥ 2

Convolution
layer

16 ⇥ 16 ⇥ 8

Convolution
layer

4 ⇥ 4 ⇥ 32

Vectorize
512 ⇥ 1

...

L5

Output
layer

• The first layer has p = 2 filters, the second has p = 4, the
third has p = 4.

• Each pooling stage uses r = 4.
• The final hidden layer is a usual fully connected layer.
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