CHALMERS

Example for binary classification

UNIVERSITY OF GOTHENBURG

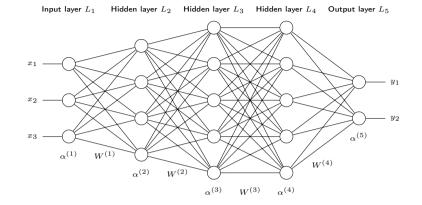
Statistical Image Analysis Lecture 11: Neural nets

David Bolin

University of Gothenburg

Gothenburg

May 14, 2018



Repetition

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG

CHALMERS

Feedforward neural nets

Input data x_1, \ldots, x_p . Output probabilities for M classes. Model

$$z_l^{(k)} = w_{l0}^{(k-1)} + \sum_{j=1}^{p_{k-1}} w_{lj}^{(k-1)} \alpha_j^{(k-1)} := W^{(k-1)} \alpha^{(k-1)}$$
$$\alpha^{(k)} = g^{(k)}(z^{(k)})$$

for k = 1, ..., K, where $p_1 = p$, $\alpha^{(1)} = x$, and α^K defines the probabilities.

• Where $W^{(1)}, \ldots, W^{(k)}$ are weights.

• $g^{(1)}, \ldots, g^{(K)}$ are non-linear functions.

Common non-linear functions:

- Rectified linear: $g(v) = \max(0, v)$.
- Softmax $g(v_i, v) = \frac{\exp(v_i)}{\sum_i \exp(v_i)}$.

UNIVERSITY OF GOTHENBURG Parameter estimation

- The neural network defines a nonlinear function f(x, W) of the input variables x, depending on the unknown weights $W = \{W^{(1)}, W^{(2)}, \dots, W^{(K)}\}.$
- To estimate W, for some input data $\{x_i, y_i\}_{i=1}^n$, we define a loss-function L(y, f(x, W)) as well as a regularization factor J(W) and estimate

$$\hat{W} = \underset{W}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i, W)) + \lambda J(W)$$

Simple examples of L and J are

- Squared loss: $L(y, f(x, W)) = \frac{1}{2} ||y f(x, W)||^2$.
- Weight-decay penalty: $J(W) = \sum_{j,l,k} (w_{l,j}^{(k)})^2$.
- We estimate W using gradient-descent.

UNIVERSITY OF GOTHENBURG

CHALMERS

Backpropagation

- The gradient of L can be estimated using the chain rule.
- 1 Compute $\alpha_l^{(k)}$ for each layer k and each node l based on the current estimate of W.
- Ø For the output layer, compute

$$\delta_l^{(K)} = \frac{\partial L}{\partial z_l^{(K)}} = \frac{\partial L}{\partial \alpha_l^{(K)}} \frac{\partial \alpha_l^{(K)}}{\partial z_l^{(K)}} = \frac{\partial L}{\partial \alpha_l^{(K)}} \dot{g}^{(K)}(K)(z_l^{(K)})$$

(7 7)

③ For $k = K - 1, \ldots, 2$, compute

$$\delta_l^{(k)} = \left(\sum_{j=1}^{p_{k+1}} w_{lj}^{(k)} \delta_j^{(k+1)}\right) \dot{g}^k(K)(z_l^{(k)})$$

4 Compute $\frac{\partial L}{\partial w_{li}^{(k)}} = \alpha_j^{(k)} \delta_l^{(k+1)}$

Repetition

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Verification for the output layer

Assume squared-loss:

$$\begin{aligned} \frac{\partial L}{\partial w_{lj}^{(K-1)}} &= \frac{\partial}{\partial w_{lj}^{(K-1)}} \frac{1}{2} \sum_{j=1}^{M} (y_j - \alpha_j)^2 \\ &= (y_l - \alpha_l) \frac{\partial \alpha_l}{\partial w_{lj}^{(K-1)}} \\ &= (y_l - \alpha_l) \frac{\partial g^{(K)}(z_l^{(K)})}{\partial w_{lj}^{(K-1)}} \\ &= (y_l - \alpha_l) \frac{\partial g^{(K)}(z_l^{(K)})}{\partial z_l^{(K)}} \frac{\partial z_l^{(K)}}{\partial w_{lj}^{(K-1)}} \\ &= \underbrace{(y_l - \alpha_l) \dot{g}^k(K)(z_l^{(k)})}_{\delta_l^{(K)}} \alpha_l^{(K-1)} \end{aligned}$$

To speed up the estimation, it is common to replace the exact gradient by a stochastic estimate:

• Option 1: Define $G(W) = \frac{1}{ns} \sum_{i=1}^{n} J_i \frac{\partial L}{\partial W^{(k)}}$, where J_i are independent Be(s) random variables. Then

$$\mathsf{E}(G(W) = \frac{1}{ns} \sum_{i=1}^{n} \mathsf{E}(J_i) \frac{\partial L}{\partial W^{(k)}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L}{\partial W^{(k)}}$$

• Option 2: Divide the training data into k batches and randomly sample one of the batches in each iteration.

Repetition

UNIVERSITY OF GOTHENBURG CHALMERS Convolutional Neural networks

- A CNN assumes that the input data has a lattice structure, like an image.
- Consists of a special type of layers called convolution layers, which has three stages:

 - 2 Detector stage: Apply a non-linear function to each image. Typically the rectified linear function $g(v) = \max(0, v)$.
 - Solve Pooling stage: For each image, reduce each non-overlapping block of $r \times r$ pixels to one single value, by for example taking the largest value in the block.

Repetition

David Bolin

UNIVERSITY OF GOTHENBURG

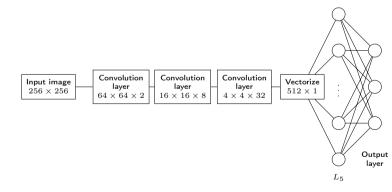
Comments

- Using a CNN, we do not need to specify features manually.
- One could view the convolution stage as a regular layer where most of the weights are zero: A pixel in the output image only depends on the $q \times q$ nearest pixels in the input image.
- The different nodes share parameters, since we use the same convolution kernel across the entire image.
- As a result, a convolution layer has pq^2 parameters, which is much less than a corresponding fully connected layer with $(mn)^2$ parameters.
- Since pooling reduces the image size, we can in the next stage use more filters without increasing the total number of nodes.
- Pooling makes the output less sensitive to small translations of the input.
- Another variant of pooling is to take the max across different learned features. This can make the output invariant to other things, such as rotations.

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG



- The first layer has p=2 filters, the second has p=4, the third has p=4.
- Each pooling stage uses r = 4.
- The final hidden layer is a usual fully connected layer.

Repetition