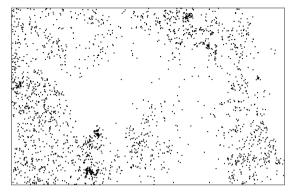
CHALMERS

Statistical Image Analysis Lecture 12: Point processes

Gothenburg May 14, 2018


David Bolin University of Gothenburg

CHALMERS

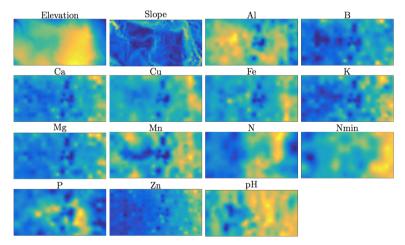
UNIVERSITY OF GOTHENBURG

Example: Data

The locations of the tree species Beilschmiedia Pendula in the tropical rainforest plot on Barro Colorado Island.

Point processes

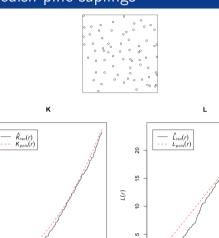
David Bolin

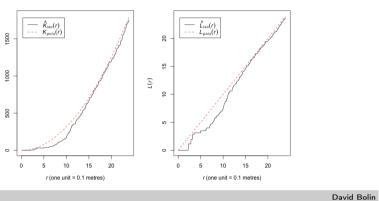

UNIVERSITY OF GOTHENBURG

Types of spatial data

Three main types of data in spatial statistics

- Continuously indexed data.
 - We have observations at some fixed locations $\mathbf{s}_1, \ldots, \mathbf{s}_N$ of a random field $X(\mathbf{s})$ where \mathbf{s} is in some region $D \subseteq \mathbb{R}^2$. X is a random field defined on D.
- Discretely indexed data.
 - We have observations at some fixed locations $\mathbf{s}_1, \ldots, \mathbf{s}_N$ of a random field $X(\mathbf{s})$ where \mathbf{s} is in some discrete set of locations \tilde{D} , such as a regular lattice. X is a random field defined on \tilde{D} .
- Point process data.
 - We have observations $\mathbf{s}_1,\ldots,\mathbf{s}_N$ indicating where something occurred. We want to draw conclusions about the process based on these locations, which are now considered to be random.

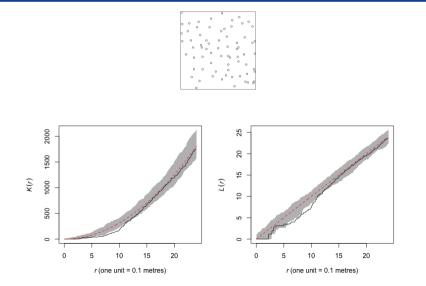

UNIVERSITY OF GOTHENBURG CHALMERS Example: Covariates



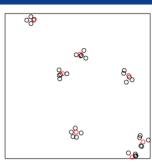
Possible covariates that can be used for drawing conclusions on the association of habitat preferences.

CHALMERS

Example: Swedish pine saplings

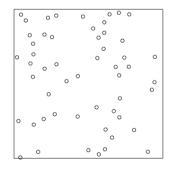


The K function


UNIVERSITY OF GOTHENBURG

K(r)

CHALMERS



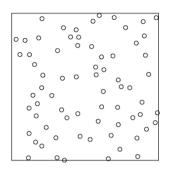
Hierarchical construction

- Simulate a "mother process" Z as a Poisson process.
- For each point $z_i \in Z$, simulate n_i independent "daughter points" x_i from a distribution $\pi(x|z_i)$ and remove Z.
- For example: Let $n_i = 5$ and take $x | z_i$ be uniform in a disc of radius 0.05 centered in z_i .
- Extension: take n_i from some distribution $\pi(n)$.

More advanced models

UNIVERSITY OF GOTHENBURG Matérn Type 1 inhibition process

- Simulate a homogeneous Poisson process Z.
- Delete any point in Z that lies closer than a distance r from the nearest other point.
- Thus, pairs of close neighbours annihilate each other.


David Bolin

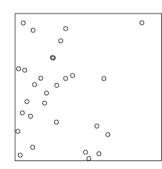
CHALMERS

CHALMERS

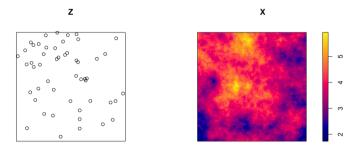
UNIVERSITY OF GOTHENBURG

Matérn Type 2 inhibition process

- Simulate a homogeneous Poisson process Z.
- Mark each point in Z by "ages", which are independent and uniformly distributed numbers in [0, 1].
- Delete any point in Z that lies closer than a distance r from another point that has has a higher age.


```
More advanced models
```

David Bolin

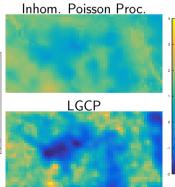

CHALMERS

UNIVERSITY OF GOTHENBURG

Inhomogeneous Poisson process

- A poisson process with a spatially varying intensity function.
- Example $\lambda(x, y) = 100 \exp(-3x)$.

- Hierarchical model, where X is a Gaussian random field and Z|X is an inhomogeneous Poisson process where $\lambda(x, y) = \exp(X(x, y)).$
- Example: X is a Gaussian random field with mean 3 and an exponential covariance function.


More advanced models

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG Example: Barro Colorado Island

- For the inhomogeneous Poisson process, the intensity function is a regression on the soil covariates.
- For the LGCP the intensity function is the regression plus a mean-zero Gaussian random field.

More advanced models

David Bolin

CHALMERS

CHALMERS

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF GOTHENBURG

 M_i .

Marked point processes and boolean models

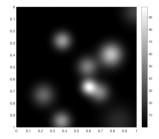
pattern data (such as tree size or age).

spatial models, such as Boolean models:

the region $\cup_i D_i$, and zero elsewhere.

random radius r_i .

Models for grayscale images based on point processes


• For each point z_i in the point pattern, assign a random "mark"

• Can be used to include more information in spatial point

• Models like this can also be used to build more complicated

• For each z_i , define a disc D_i centered at the point, with a

• Define a binary image by letting the pixels have value one in

- We can extend the boolean model to a model for grayscale images by replacing the discs with kernel functions.
- $\bullet\,$ Example: Let the value at location s in the image be

$$I(\mathbf{s}) = \sum_{i} \pi_G(\mathbf{s}; z_i, r_i \mathbf{I})$$

where r_i are some positive random variables.