Lecture 1: Introduction Statistical Image Analysis

David Bolin University of Gothenburg

> Gothenburg March 19, 2018

UNIVERSITY OF GOTHENBURG

CHALMERS

Practical information

Teachers:

David Bolin: Lecturer and examiner

Room: H3028

E-mail: david.bolin@chalmers.se

Marco Longfils: Exercise supervisor and project assistance

Room: H3015

E-mail: longfils@chalmers.se

Homepage:

www.math.chalmers.se/Stat/Grundutb/CTH/tms016/1718/

UNIVERSITY OF GOTHENBURG

CHALMERS

Practical information

Schedule:

Lectures: Mondays and Wednesdays (10-12) Compute exercices: Mondays and Wednesdays (13-15)

The lectures will cover the theory, which you will use in practice in the computer exercise directly after each lecture.

Litterature:

- Lecture notes by Mats Rudemo.
- Handbook of Spatial Statistics by Gelfand et. al.
- Computer Age Statistical Inference by Efron and Hastie.

The books are available as eBooks, see homepage.

In the schedule, the relevant chapters are indicated for each lecture.

Practical David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Examimation

There will be two components in the examination:

- Written exam at the end of the course
- Project assignment.

these are weighted equally for the final grade.

Successful completion of the course will be rewarded by 7.5 hp.

The project:

- can be in groups of 1-3 students.
- will consist of three parts: two problems introduced in the computer exercises and one problem you can choose on your own (with approval from me).
- More information will be given after easter.

Practical David Bolin Practical David Bolin

Contents

- Image analysis is a very active field of research.
- In statistical image analysis, we use statistical models and methods for applications in image analysis.
- The methods you will learn have applications also outside traditional image analysis:
 - climate science
 - environmental statistics
 - remote sensing
 - microscopy
 - medical imaging and fMRI
 - Disease mapping
 - +++

Course content David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

A common problem in geostatistics

- Mean summer temperatures (June-August) in the continental US 1997 recorded at 250 weather stations.
- We want to estimate all US temperatures based on the data.

Kriging estimation

Using a statistical model, where we assume that there observations are noisy observations of the true temperatures, we obtain

Course content David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Image reconstruction

Course content David Bolin

Course content

David Bolin

Classification

Noise reduction

Course content David Bolin

Course content

0

0

0

0

UNIVERSITY OF GOTHENBURG

CHALMERS

Segmentation

UNIVERSITY OF GOTHENBURG

0

CHALMERS

David Bolin

Puppy or bagel?

See twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/for more important classification problems.

Course content David Bolin

Course content

David Bolin

Current plan for lectures:

Point processes

The locations of the tree species Beilschmiedia Pendula in the tropical rainforest plot on Barro Colorado Island.

David Bolin Course content

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Point processes

Possible covariates that can be used for drawing conclusions on the association of habitat preferences.

Course content

CHALMERS

UNIVERSITY OF GOTHENBURG

Example: Interpolation of the temperature data

1 Introduction and background

6-7 Mixture models and image segmentation

8-10 Image classification and neural nets

13 Recap and exam questions

2-3 Gaussian random fields 4-5 Markov random fields

11-12 Point processes

14-15 Project seminars

• A first idea is to use linear regression to interpolate the data:

$$Y(\mathbf{s}) = \sum_{i=1}^k \beta_i B_i(\mathbf{s}) + \varepsilon_{\mathbf{s}}, \quad \text{where } \varepsilon_{\mathbf{s}} \text{ are iid } \mathsf{N}(0,\sigma^2)$$

Possible covariates

David Bolin Course content

Example

David Bolin

OLS estimate

• Estimate the parameters using ordinary least squares:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{B}\boldsymbol{\beta}\| \quad \Rightarrow \quad \hat{\boldsymbol{\beta}} = (\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{Y},$$

where $\mathbf{B}_{ij} = B_i(\mathbf{s}_j)$ and $\mathbf{Y}_i = Y(\mathbf{s}_i)$.

• Calculate the prediction $\hat{X}(\mathbf{s}) = \sum_{i=1}^k \hat{\beta}_i B_i(\mathbf{s})$.

UNIVERSITY OF GOTHENBURG

CHALMERS

Residudals

- How do we test whether the prediction is reasonable?
- If the model assumptions hold, the residuals $Y(\mathbf{s}) \hat{X}(\mathbf{s})$ should be independent identically distributed.

Example David Bolin