CHALMERS

David Bolin

CHALMERS

Lecture 2: Random fields Statistical Image Analysis

University of Gothenburg Gothenburg

March 21, 2018

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Random fields

Title page

- We have measurements y_i, \ldots, y_n taken at some spatial locations s_1, \ldots, s_n .
- Given that we also have some explanatory variables B_1, \ldots, B_K , we could use a regression model

$$Y_i = \sum_{k=1}^{K} B_k(s_i)\beta_k + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma^2)$$

- The explanatory variables can often not capture all dependence for spatial data.
- Therefore, we would like to capture this additional dependence through a random field X(s) in the model,

$$Y_i = \sum_{k=1}^{K} B_k(s_i)\beta_k + X(s_i) + \varepsilon_i$$

• Today we will see how we can define this quantity.

UNIVERSITY OF GOTHENBURG

Finite dimensional distributions

- Let $D \subseteq \mathbb{R}^d$ be a spatial domain of interest.
- $X(\mathbf{s})$, $\mathbf{s} \in D$, can be thought of as a function-valued random variable, with realisations $X(\mathbf{s}, \omega)$ where $\omega \in \Omega$, and Ω is some abstract sample space.
- Fixing a set of locations $\{\mathbf{s}_1,\ldots,\mathbf{s}_n\}$,

$$\mathbf{X} = (X(\mathbf{s}_1), \dots, X(\mathbf{s}_n))^T$$

is a multivariate random variable.

• The distribution of the process is given by the collection of the finite dimensional distributions

 $F(x_1,\ldots,x_n;\mathbf{s}_1,\ldots,\mathbf{s}_n) = \mathsf{P}(X(\mathbf{s}_1) \le x_1,\ldots,X(\mathbf{s}_n) \le x_n)$

- for all $n < \infty$ and every set of locations $\{s_1, \ldots, s_n\}$.
- Kolmogorov existence theorem: The model is valid if the family of finite-dimensional distributions is consistent under reorderings and marginalizations (see Billingsley 1986).

Title page

UNIVERSITY OF GOTHENBURG Matérn covariances

UNIVERSITY OF GOTHENBURG

Examples

David Bolin

CHALMERS

CHALMERS

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF GOTHENBURG

Compactly supported covariance functions

• Euclid's hat covariance function:

$$r_{0}(h) = \begin{cases} \sigma^{2} I_{\frac{n+1}{2},\frac{1}{2}}(1-h^{2}/\theta^{2}) & h \leq \theta \\ 0 & h > \theta \end{cases}$$

where

$$I_{\frac{n+1}{2},\frac{1}{2}}(x) = \frac{\int_0^x \sqrt{t^{n-1}(1-t)^{-1}dt}}{\int_0^1 \sqrt{t^{n-1}(1-t)^{-1}dt}}$$

- is the regularized incomplete beta function.
- It is a valid covariance for \mathbb{R}^d for $n \geq d$.
- n = 3 gives us the popular spherical covariance function:

$$r_0(h) = \begin{cases} \sigma^2 (1 - \frac{3}{2} \frac{h}{\theta} + \frac{1}{2} \frac{h^3}{\theta^3}), & h \le \theta\\ 0 & h > \theta \end{cases}$$

Examples

UNIVERSITY OF GOTHENBURG Euclid's hat with heta=1

Examples

Examples

David Bolin

CHALMERS

CHALMERS