Lecture 2: Random fields

Statistical Image Analysis

David Bolin
University of Gothenburg

Gothenburg
March 21, 2018

UNIVERSITY OF GOTHENBURG

Random fields

- We have measurements y_{i}, \ldots, y_{n} taken at some spatial locations s_{1}, \ldots, s_{n}.
- Given that we also have some explanatory variables B_{1}, \ldots, B_{K}, we could use a regression model

$$
Y_{i}=\sum_{k=1}^{K} B_{k}\left(s_{i}\right) \beta_{k}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)
$$

- The explanatory variables can often not capture all dependence for spatial data.
- Therefore, we would like to capture this additional dependence through a random field $X(s)$ in the model,

$$
Y_{i}=\sum_{k=1}^{K} B_{k}\left(s_{i}\right) \beta_{k}+X\left(s_{i}\right)+\varepsilon_{i}
$$

- Today we will see how we can define this quantity.

Compactly supported covariance functions

- Euclid's hat covariance function:

$$
r_{0}(h)= \begin{cases}\sigma^{2} I_{\frac{n+1}{2}, \frac{1}{2}}\left(1-h^{2} / \theta^{2}\right) & h \leq \theta \\ 0 & h>\theta\end{cases}
$$

where

$$
I_{\frac{n+1}{2}, \frac{1}{2}}(x)=\frac{\int_{0}^{x} \sqrt{t^{n-1}(1-t)^{-1}} d t}{\int_{0}^{1} \sqrt{t^{n-1}(1-t)^{-1}} d t}
$$

is the regularized incomplete beta function.

- It is a valid covariance for \mathbb{R}^{d} for $n \geq d$.
- $n=3$ gives us the popular spherical covariance function:

$$
r_{0}(h)= \begin{cases}\sigma^{2}\left(1-\frac{3}{2} \frac{h}{\theta}+\frac{1}{2} h^{3} \theta^{3}\right), & h \leq \theta \\ 0 & h>\theta\end{cases}
$$

Examples

UNIVERSITY OF GOTHENBURG
CHALMERS

Euclid's hat with $\theta=1$

