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Example project 1

Data from Agroväst Livsmedel AB
• To increase the quality of animal fodder, clover is commonly

grown alongside foraging grasses. A healthy balance is around
20� 30% clover.

• It is important that that farmers can get reliable estimates of
the proportion, which currently is done manually.

• The aim of this project is to be able to estimate the clover
proportion directly from images of the foraging grasses.
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Example project 2

Data from the Spatial Morphology Group at Chalmers
• For city planning it is important to know how the structure of

the city affects things such as population density, and housing
prices.

• In this project, the aim is to estimate how spatial models using
various network measures can predict population denstiy or
housing prices.
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Example project 3

Data from AstraZeneca
• For the production of medical tablets, it is important to know

how the manufacturing process affects the composition.
• To do this, one first needs to be able to identify the different

components in the tablet based on micro-CT images.
• The goal of this project is to design a method for image

segmentation of such images.
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Example project 4

Data from Department of Historical Studies at GU
• The Swedish rock art archive contains several thousand images

of rock art.
• To simplify analysis of such images, it is of interest to design

algorithms for automatic segmentation and classification.
• In this project, you could either focus on image segmentation

or classification.
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Gaussian random fields

So far, we have looked at models

Yi = B(si)� +X(si) + "i, i = 1, . . . , N

where "i ⇠ N(0,�2
e) and X(s) is a Gaussian random field.

• The data vector Y = (Y1, . . . , YN )

T has distribution
N(B�,⌃, where ⌃ = ⌃X + �

2
eI.

• log-likelihood:
`(Y;�,✓) = 1

2 log |⌃|� 1
2(Y �B�)T⌃�1

(Y �B�).
• Kriging: E(Y0|Y,�,✓) = B(s0)� + r⌃

�1
(Y �B�),

where ri = C(Y0, Yi).
• Sampling: Ys = B� +R

T
e, where e ⇠ N(0, I) and

R

T
R = ⌃ is the Cholesky factorization.
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Implementation aspects

Consider the problem of sampling. Two important aspects are
1 The RAM memory required, which is dominated by the

memory required to store ⌃, which has O(N

2
) unique

elements.
2 The computation time for performing the necessary steps:

Compute ⌃, compute the Cholesky factorization ⌃ = R

T
R,

solve x = R

T
e with e ⇠ N(0, I). This requires O(N

3
) flops.

Assume that x is an image of size N = n⇥ n. The following table
gives some results for the sampling on a standard laptop.

time (s) Memory (MB)
n = 50 1.1 47.7
n = 100 23.4 762.9
n = 150 272.5 3862.4

An image of size 150⇥ 150 is not a very large image!
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Gaussian Markov random fields

• A Multivariate Gaussian random variable is said to be a GMRF
with respect to the undirected graph G = (V, E) if

⇡(xi|x�i) = ⇡(xi|xNi)

where Ni = {j 2 V : (i, j) 2 E}.
• Example: The AR(1) process defined by

x0 ⇠ N(0, (1 + ↵

2
)

�1
)

xi = ↵xi�1 + "i, "i ⇠ N(0, 1)

for ↵ 2 (�1, 1) is a GMRF with respect to the graph
1 2 3 4 5
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Computation times for a GMRF

Assume that x is an image of size N = n⇥ n, chosen as a GMRF
specified using the stencil

0

@
0 �1 0

�1 5 �1

0 �1 0

1

A

Let us now sample x and measure
1 The RAM memory required.
2 The computation time for performing the necessary steps.

The following table gives some results for the sampling on a
standard laptop.

time (s) Memory (MB)
n = 50 0.012 0.21
n = 100 0.054 0.83
n = 150 0.177 1.88
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Sparsity of Q and R

• The crucial aspect of computations with GMRFs is that the
Cholesky factor R is sparse.

• However, it is often less sparse than the precision matrix Q.
The additional non-zero nodes is usually called fill-in.

• We can reduce the fill-in by reordering the nodes.
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Sparsity using reorderings

• Finding the optimal reordering is an NP-hard problem, but
there are many fast methods for finding good reorderings.

• The approximate minimum degree (AMD) reordering is
generally a good option.

• The images above are obtained with reo = amd(Q) in Matlab.
• If you use reorderings, remember to also reorder the

observations, covariates, etc. using the same reordering.
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