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Data from the Spatial Morphology Group at Chalmers

e For city planning it is important to know how the structure of
the city affects things such as population density, and housing
prices.

e In this project, the aim is to estimate how spatial models using
various network measures can predict population denstiy or
housing prices.
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Data from Agrovist Livsmedel AB

e To increase the quality of animal fodder, clover is commonly
grown alongside foraging grasses. A healthy balance is around
20 — 30% clover.

e It is important that that farmers can get reliable estimates of
the proportion, which currently is done manually.

e The aim of this project is to be able to estimate the clover
proportion directly from images of the foraging grasses.
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Data from AstraZeneca
e For the production of medical tablets, it is important to know
how the manufacturing process affects the composition.
e To do this, one first needs to be able to identify the different
components in the tablet based on micro-CT images.
e The goal of this project is to design a method for image
segmentation of such images.
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Data from Department of Historical Studies at GU

e The Swedish rock art archive contains several thousand images
of rock art.

e To simplify analysis of such images, it is of interest to design
algorithms for automatic segmentation and classification.

e In this project, you could either focus on image segmentation
or classification.
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Gaussian random fields

So far, we have looked at models
Y;:B<Si>,8+X(Si)+€i, i=1,....,N

where ¢; ~ N(0,02) and X (s) is a Gaussian random field.

o The data vector Y = (Y1,...,Yy)? has distribution
N(BB3,X, where ¥ = Xy + 021

e log-likelihood:
UY;B,0) = 3log |2 - 5(Y - BB)'S"'(Y - Bg).

o Kriging: E(Yo|Y,3,0) = B(so)B +rX (Y — B3),
where r; = C(Y), V).

e Sampling: Y, = B3 + R’e, where e ~ N(0,I) and
RTR = X is the Cholesky factorization.
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Implementation aspects

Consider the problem of sampling. Two important aspects are
@ The RAM memory required, which is dominated by the
memory required to store 3, which has O(N?) unique
elements.
® The computation time for performing the necessary steps:
Compute 3, compute the Cholesky factorization 3 = R’ R,
solve x = R”e with e ~ N(0,1). This requires O(N?) flops.
Assume that x is an image of size N = n x n. The following table
gives some results for the sampling on a standard laptop.

time (s) Memory (MB)

n = 50 11 47.7
n = 100 23.4 762.9
n=150 2725 3862.4

An image of size 150 x 150 is not a very large image!
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Gaussian Markov random fields

e A Multivariate Gaussian random variable is said to be a GMRF
with respect to the undirected graph G = (V, &) if

m(zi|z—;) = m(zilzy;)

where N; ={j € V: (i,j) € £}.
e Example: The AR(1) process defined by

zo ~ N(0, (14 a®)™h
T =Qx;—1 +E;, E;nr~ N(O, 1)

for « € (—=1,1) is a GMRF with respect to the graph
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Computation times for a GMRF

Assume that x is an image of size N = n x n, chosen as a GMRF
specified using the stencil
0o -1 0
-1 5 -1
0o -1 0
Let us now sample x and measure
@ The RAM memory required.
® The computation time for performing the necessary steps.

The following table gives some results for the sampling on a
standard laptop.

time (s) Memory (MB)

n =50 0.012 0.21
n=100 0.054 0.83
n=150 0.177 1.88
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Sparsity of Q and R
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e The crucial aspect of computations with GMRFs is that the
Cholesky factor R is sparse.

e However, it is often less sparse than the precision matrix Q.
The additional non-zero nodes is usually called fill-in.

e We can reduce the fill-in by reordering the nodes.
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Sparsity using reorderings
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e Finding the optimal reordering is an NP-hard problem, but
there are many fast methods for finding good reorderings.

e The approximate minimum degree (AMD) reordering is
generally a good option.

e The images above are obtained with reo = amd(Q) in Matlab.

e If you use reorderings, remember to also reorder the
observations, covariates, etc. using the same reordering.
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