Statistical Image Analysis Lecture 7: Image features

THE REPORT OF THE PROPERTY OF

David Bolin University of Gothenburg

> Gothenburg April 23, 2018

UNIVERSITY OF GOTHENBURG

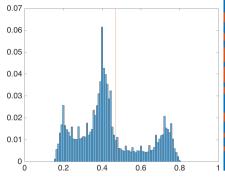
CHALMERS

Image classification

UNIVERSITY OF GOTHENBURG

CHALMERS

Intensity-based thresholding



Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Gaussian mixture models

• Hierarchical model for pixel values given classes:

$$\pi(\mathbf{Y}_i|z_i=k) \sim \mathsf{N}(\pmb{\mu}_k, \pmb{\Sigma}_k)$$

$$\pi(z_i) = \begin{cases} \pi_1 & \text{if } z_i=1\\ \pi_2 & \text{if } z_i=2\\ \vdots\\ \pi_K & \text{if } z_i=K\\ 0 & \text{otherwise} \end{cases}$$

Unconditional density:

$$\pi(\mathbf{Y}_i) = \sum_{k=1}^K \pi_k \pi_G(\mathbf{Y}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Classification using GMMs

Posterior class probabilities

$$P(z_i = k | \mathbf{Y}_i) = \frac{\pi_k \pi_G(\mathbf{Y}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \pi_G(\mathbf{Y}_i; \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$

• Maximum aposteriori-classification:

$$class_i = \operatorname*{max}_k \mathsf{P}(z_i = k | \mathbf{Y}_i)$$

• This is also known as quadratic discriminant analysis. If all Σ_k are equal, we get linear discriminant analysis.

Classification and mixture models

David Bolin

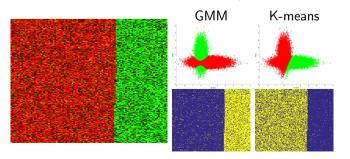
UNIVERSITY OF GOTHENBURG

CHALMERS

The K-means algorithm

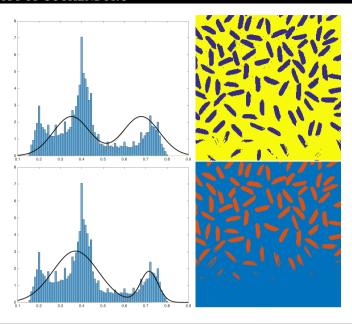
- lacktriangle Randomly select K observations as cluster centers.
- Assign each observation to the nearest cluster center.
- 3 Compute the mean for each cluster and assign these as new cluster centers.
- Repeat from Step 2.

In the K-means algorithm, we assume $\pi_k = 1/K$ and $\Sigma_k = \sigma^2 \mathbf{I}$.



UNIVERSITY OF GOTHENBURG

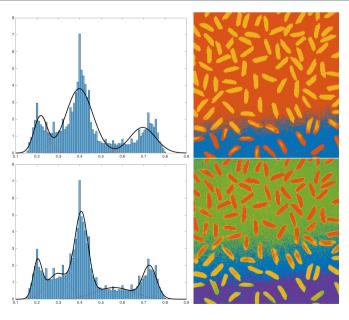
CHALMERS



Classification and mixture models

David Bolin

CHALMERS



Supervised learning

- We have a set of pixels values $\{Y_1, \dots, Y_n\} \in \mathbb{R}^d$ with known classes $\{z_1, \ldots, z_n\}$.
- Base parameter estimates on these:

$$\hat{\pi}_k = \frac{n_k}{n} \quad \text{where } n_k = \sum_{i=1}^n 1(z_i = k)$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n 1(z_i = k) \mathbf{Y}_i$$

$$\hat{\Sigma}_k = \frac{1}{n_k - d} \sum_{i=1}^n 1(z_i = k) (\mathbf{Y}_i - \boldsymbol{\mu}_k) (\mathbf{Y}_i - \boldsymbol{\mu}_k)^T$$

Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Unsupervised learning

• Let θ denote all model parameters. The gradient of the likelihood can be written as

$$\nabla \log \pi(\mathbf{Y}; \boldsymbol{\theta}) = \sum_{i=1}^{N} \sum_{k=1}^{K} P(z_i = k | \mathbf{Y}_i, \boldsymbol{\theta}) (\nabla \log \pi_G(\mathbf{Y}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \nabla \log \pi_k)$$

• Gradient descent optimization: Choose $\theta^{(0)}$ and iterate

$$\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} + \gamma \nabla \log \pi(\mathbf{Y}; \boldsymbol{\theta}^{(i)})$$

where γ determines the step length.

• EM-algorithm: Set $\theta^{(i+1)}$ such that

$$\sum_{i=1}^{N} \sum_{k=1}^{K} P(z_i = k | \mathbf{Y}_i, \boldsymbol{\theta}^{(i)}) (\nabla \log \pi_G(\mathbf{Y}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \nabla \log \pi_k) = 0$$

UNIVERSITY OF GOTHENBURG

CHALMERS

Classification using colors

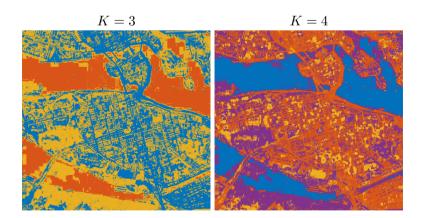
Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

RGB classification

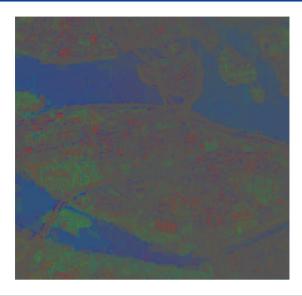


CHALMERS

UNIVERSITY OF GOTHENBURG

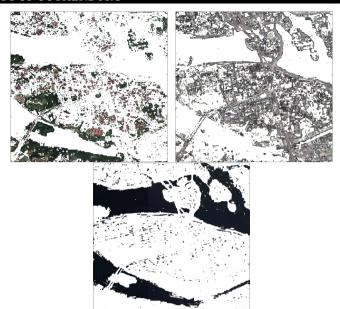
CHALMERS

Relative colors



Classification and mixture models

David Bolin



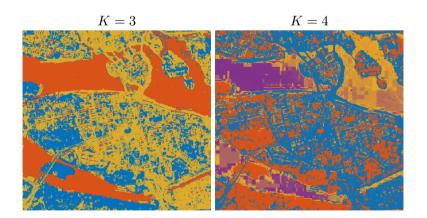
Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Classification using relative amount of green and blue



UNIVERSITY OF GOTHENBURG

CHALMERS

Including additional features

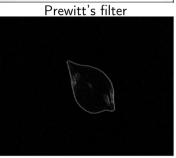
- The GMM is does not take spatial dependencies into account.
- The classes may have additional features except for raw pixel values which we may want to use.
- Today we will introduce some common image features that are useful both for segmentation and classification.
- On Wednesday, we will extend the mixture model so that the dependencies are modeled directly.

Classification and mixture models David Bolin Classification and mixture models David Bolin

CHALMERS



Horizontal edge filter



Classification and mixture models

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

