
Computer exercise 3
Covariance estimation and kriging

Spatial statistics and image analysis, TMS016

1 Introduction
The purpose of this computer exercise is to give an introduction to parameter estimation and kriging
for Gaussian random field models for spatial data.

Before you begin, download the Matlab files for the exercise from the course homepage. When
in doubt about how to use a specific function, use help and doc to get more information.

2 Data generation
Use the methods from Computer Exercise 2 to simulate a Gaussian random field X(s) on a regular
n × n lattice (let n be at least 50). Use a Matérn covariance function and assume a regression for
the mean using the two basis functions B1(s) = 1 and B2(s) = x (here x is the x-coordinate of
s = (x, y)). This means that you can construct X(s) as

X(s) = B1(s)β1 +B2(s)β2 + Z(s)

where Z(s) is a mean-zero Gaussian random field with a Matérn covariance function. Based on a
simulation of X(s), construct N observations (let N be around 500)

Yi = X(si) + σi, i = 1, . . . , N

where σi ∼ N(0, σ2
e) are independent measurement noise terms and β1, β2 are some regression coef-

ficients that you can choose as you want. Choose the observation locations s1, . . . , sN by randomly
selecting N of the locations on the lattice. This can be done by

>> ind = randperm(n*n);
>> ind_o = ind(1:n_obs);
>> loc_o = loc(ind_o,:);

Plot the simulated field X(s) using imagesc as well as the observations using scatter. Using the
hold on command, you can plot the two in the same figure. You might then have to set the two
arguments x and y in imagesc so that the two plots use the same scale on the x and y axes.

3 Parameter estimation
We will now use the simulated data y to estimate the model parameters using the classical geosta-
tistical approach.

• Start by estimating the mean µ using least-squares, and compute the residuals e = y - mu.
Compare the estimated regression parameters to the true ones.

• Use the function emp_variogram to compute a binned estimate of the variogram and compare
with the true variogram that can be computed using the function matern_variogram.

• Use the function cov_ls_est to perform least-squares estimation of a Matérn variogram to the
binned estimate. Plot it together with the true variogram and the binned estimate.
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• Update the estimate of the regression parameters using GLS. Compare with the OLS estimate
as well as the true parameters. Hint: To compute the GLS estimate, you will need to compute
the covariance matrix for the observations. Take a look at Computer Exercise 2 for how to
compute the distance matrix D for the locations. The covariance matrix can then be obtained
using the function matern_covariance with this matrix as the first argument. Remember to
add the nugget effect to this matrix.

4 Kriging prediction
We will now use the estimated model parameters to perform kriging prediction. We reconstruct the
field at all locations on the grid.

• Compute the needed matrices Σo, Σp, Σop, Bo, and Bp. This can be done in a similar way as
when you computed the covariance matrix for the GLS estimate: The easiest way is to merge
the two set of locations, compute the corresponding covariance matrix, and finally extract the
required matrices as blocks of this matrix.

• Compute the kriging predictor X̂ and compare with the true field.

5 Likelihood-based parameter estimation
This part requires the theory from Lecture 4, so wait until after that lecture before doing this part.

• Redo the estimation of the parameters using maximum-likelihood. This can be done using the
cov_ml_est function. Compare the results to those obtained using least-squares.

• Re-compute the kriging predictor based on the ML parameter estimates and compare with the
previous predictor. Is there a large difference?

• Compute the variances of the kriging predictions based on the two parameter estimates and
compare the differences.

David Bolin, University of Gothenburg 2 March 2019


	Introduction
	Data generation
	Parameter estimation
	Kriging prediction
	Likelihood-based parameter estimation

