Lecture 11: Neural networks Spatial Statistics and Image Analysis

Gothenburg May 13, 2019

David Bolin

University of Gothenburg

CHALMERS

David Bolin

JNIVERSITY OF GOTHENBURG Neural nets

- A problem with the methods for image classification from last time is the need for feature selection.
- Neural networks is a class of methods that can be used to design classifiers without the need to select features.
- Let us start with the binary classification problem: We have an image **x** with pixels x_1, \ldots, x_p , which can belong to one of two classes.
- Model:

 $y_1 = \mathsf{P}(z=0|\mathbf{x}) = f(\mathbf{x};\boldsymbol{\theta}),$ $u_2 = \mathsf{P}(z=1|\mathbf{x}) = 1 - f(\mathbf{x};\boldsymbol{\theta})$

for some non-linear function of the pixel values.

• Likelihood for training the model from M images:

$$\ell(\boldsymbol{\theta}) = \prod_{i=1}^{M} f(\mathbf{x}_i; \boldsymbol{\theta})^{z_i} (1 - f(\mathbf{x}_i; \boldsymbol{\theta})^{z_i})^{1-z_i}$$

UNIVERSITY OF GOTHENBURG

A single-layer neural net

- The idea of neural nets is to approximate $f(\mathbf{x})$ as a sequence of "'simple" non-linear functions.
- Let's look at a single-laver model first.
- Start by forming p_1 different linear combinations of the data:

 $\mathbf{W}_{1}^{(1)} \cdot \mathbf{x}, \mathbf{W}_{2}^{(1)} \cdot \mathbf{x}, \dots, \mathbf{W}_{m}^{(1)} \cdot \mathbf{x}$

where $\mathbf{W}_{k}^{(1)}$ are weights and $\mathbf{W}_{k}^{(1)} \cdot \mathbf{x} = w_{k0}^{(1)} + \sum_{i=1}^{p} w_{ki}^{(1)} x_{i}$. • To each linear combination, apply a non-linear function $q^{(1)}$:

 $\alpha_1 = g^{(1)}(\mathbf{W}_1^{(1)} \cdot \mathbf{x}), \alpha_2 = g^{(1)}(\mathbf{W}_2^{(1)} \cdot \mathbf{x}), \dots, \alpha_n = g^{(1)}(\mathbf{W}_n^{(1)} \cdot \mathbf{x})$

• Finally approximate y_1 and y_2 as a transformed linear combinations of these values:

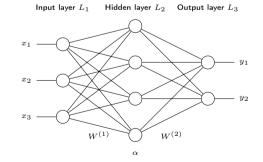
$$y_1 = g_1^{(2)}(\mathbf{W}_1^{(2)} \cdot \boldsymbol{\alpha}, \mathbf{W}_2^{(2)} \cdot \boldsymbol{\alpha}), y_2 = g_2^{(2)}(\mathbf{W}_1^{(2)} \cdot \boldsymbol{\alpha}, \mathbf{W}_2^{(2)} \cdot \boldsymbol{\alpha})$$

Nerual networks

UNIVERSITY OF GOTHENBURG

• To make sure that y_1, y_2 are probabilities, we take $g^{(2)}(x)$ as the softmax function: $g_k^{(2)}(x_1, x_2) = \frac{e^{x_k}}{\sum_{l=1}^2 e^{x_l}}$.

• We can represent this model as a network:



- This is a feed-forward network since information only flows forward in the network.
- The nodes in the hidden layer are called neurons.
- The functions $g^{(1)}$ and $g^{(2)}$ are called activation functions.

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG

CHALMERS

• Our model for $y_1 = f(\mathbf{x})$ is thus

$$f(\mathbf{x}) = \frac{e^{z_1}}{e^{z_1} + e^{z_2}}, \ z_k = w_{k0}^{(2)} + \sum_{i=1}^p w_{ki}^{(2)} g^{(1)} \left(w_{i0}^{(1)} + \sum_{j=1}^p w_{ij}^{(1)} x_i \right)$$

where all the weights w should be estimated to give a good fit.

• The main idea of neural networks is that we should be able to approximate any function $f(\mathbf{x})$ in this way:

The universal approximation theorem

A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of \mathbb{R}^n , under mild assumptions on the activation function.

Nerual networks

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG

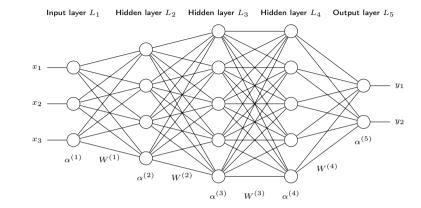
General feed-forward neural nets for classification

- Input data x_1, \ldots, x_p . Output: probabilities for K classes.
- In total L-1 hidden layers in the model.
- We can allow for a non-linear transformation of the input data in the Input layer, giving $\alpha_k^{(1)} = q^{(0)}(x_k)$.
- Usually we set $g^{(0)}$ to the identity function but keep the notation $\alpha_k^{(1)} = x_k$ to simplify the formulas.
- At layer k in the model, define linear combination of the neurons in previous layers, and new neuron values:

$$z_{l}^{(l)} = w_{k0}^{(l-1)} + \sum_{j=1}^{p_{l-1}} w_{kj}^{(l-1)} \alpha_{j}^{(l-1)} := W^{(l-1)} \alpha^{(l-1)}$$
$$\alpha^{(l)} = g^{(l)}(z^{(l)})$$

for
$$l=1,\ldots,L$$
, where $p_1=p$, and $lpha^{(1)}=x$

Example for binary classification



Nerual networks

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG Comments

- The output probabilities are given by $\alpha^{(L)}$.
- Common activation functions for the internal lavers:
 - Rectified linear: $q(v) = \max(0, v)$. Sometimes called Rectified Linear Unit (RELU).
 - Sigmoid function: $g(v) = \frac{1}{1+e^{-v}}$. Sometimes called a radial basis function (RBF network)
 - $g(v) = \tanh(v)$.
- Common activation function for the output layer for classification:

 - Softmax g_i(v₁,...,v_K) = exp(v_i)/∑^K_{k=1} exp(v_k).
 Symmetric version of the logit link used for logistic regression.
- The neural network is nothing else than a hierarchically specified non-linear regression. Compare with logistic regression.

Nerual networks

UNIVERSITY OF GOTHENBURG

CHALMERS

Parameter estimation

- The neural network defines a nonlinear function f(x, W) of the input variables x, depending on the unknown weights $W = \{W^{(1)}, W^{(2)}, \dots, W^{(L)}\}.$
- To estimate W, for some input data $\{\mathbf{x}_i, y_i\}_{i=1}^M$, we can define a loss-function $R(y, f(\mathbf{x}, W))$ and compute

$$\hat{W} = \underset{W}{\operatorname{arg\,min}} \sum_{i=1}^{M} R(y_i, f(\mathbf{x}_i, W))$$

Simple examples of L:

• Estimate W using gradient-descent.

Parameter estimation

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Regularization

- Neural networks in general have too many parameters and will overfit the data.
- An early solution to this problem was to stop the gradient-based estimation before convergence.
- A validation dataset can be used to determine when to stop.
- A more explicit method for regularization is to include a penalty on the weights in the loss-function:
- The neural network defines a nonlinear function $f(\mathbf{x}, W)$ of the input variables \mathbf{x} , depending on the unknown weights

$$\hat{W} = \underset{W}{\operatorname{arg\,min}} \sum_{i=1}^{M} R(y_i, f(\mathbf{x}_i, W)) + \lambda J(W)$$

- A common example is the weight-decay penalty:
- $J(W) = \sum_{j,l,k} (w_{k,j}^{(l)})^2$ which will pull the weights to zero. λ is a tuning parameter: estimate using cross-validation.

Backpropagation

The gradient of L can be estimated using the chain rule.

- **1** Feed forward pass: Compute $\alpha_k^{(l)}$ for each layer l and each node k based on the current estimate of W.
- Por the output layer, compute

$$\delta_k^{(L)} = \frac{\partial R}{\partial z_k^{(L)}} = \frac{\partial R}{\partial \alpha_k^{(L)}} \frac{\partial \alpha_k^{(L)}}{\partial z_k^{(L)}} = \frac{\partial R}{\partial \alpha_k^{(L)}} \dot{g}^{(L)}(z_k^{(L)})$$

3 For
$$l = L - 1, \ldots, 2$$
, compute

$$\delta_k^{(l)} = \left(\sum_{j=1}^{p_{l+1}} w_{kj}^{(l)} \delta_j^{(l+1)}\right) \dot{g}^{(l)}(z_k^{(l)})$$

4 Compute
$$\frac{\partial R}{\partial w_{kj}^{(l)}} = \alpha_j^{(l)} \delta_k^{(l+1)}$$

Parameter estimation

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG Gradient descent

• Update $w_{kj}^{(l)}$ using a gradient descent step. Assuming weight-decay penalty:

$$w_{kj}^{(l)} \leftarrow w_{kj}^{(l)} - \gamma \left(\frac{\partial R}{\partial w_{kj}^{(l)}} + \lambda w_{kj}^{(l)} \right)$$

• We need a lot of data to estimate these models, and for large datasets, the computation of $\frac{\partial R}{\partial w_i^{(l)}}$ is expensive: For Mtraining images with p pixels, and a network with N hidden units, $\mathcal{O}(pMN)$ operations are needed.

UNIVERSITY OF GOTHENBURG

Stochastic gradient descent

To speed up the estimation, it is common to replace the exact gradient by a stochastic estimate:

• Option 1: Define $G(W) = \frac{1}{s} \sum_{i=1}^{M} J_i \frac{\partial R}{\partial W^{(l)}}$, where J_i are independent Be(s) random variables. Thus, we are randomly selecting (on average) 100s% of the images in each iteration. Then

$$\mathsf{E}(G(W)) = \frac{1}{s} \sum_{i=1}^{M} \mathsf{E}(J_i) \frac{\partial R}{\partial W^{(l)}} = \sum_{i=1}^{M} \frac{\partial R}{\partial W^{(l)}}$$

• Option 2: Divide the training data into *m* batches and randomly sample one of the batches in each iteration.

There are several other tricks to speed up convergence, such as momentum updates.

Parameter estimation

David Bolin

CHALMERS

CHALMERS

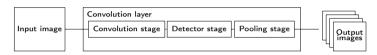
UNIVERSITY OF GOTHENBURG

Convolutional Neural networks

- Often, a fully connected network simply has too many parameters: For the first single-layer network for binary classification, we have $pp_1 + 2p_1$ unknown weights. $p = p_1 = 1000$ thus gives 1002000 unknown parameters!
- The problem is that we have a separate weight between each pixel and each hidden node.
- The idea of Convolutional neural networks is to reduce the number of parameters by assuming that most of the weights are zero, and that the non-zero weights have a common structure.
- A CNN assumes that the input data has a lattice structure, like an image.
- Consists of a special type of layers called convolution layers, which are based on filtering the image with a kernel.

Convolution layers

- A convolution layer has three stages:
- Convolution stage: Convolve each input image with f different linear filters, with kernels of size $q \times q$, producing f output images.
- **2** Detector stage: Apply a non-linear function to each image. Typically the rectified linear function $g(v) = \max(0, v)$.
- ⁽³⁾ Pooling stage: For each image, reduce each non-overlapping block of $r \times r$ pixels to one single value, by for example taking the largest value in the block.



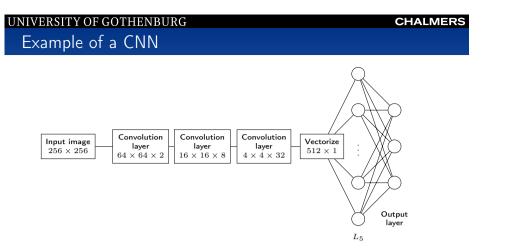
Convolutional neural networks

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG Comments

- One could view the convolution stage as a regular layer where most of the weights are zero: A pixel in the output image only depends on the q × q nearest pixels in the input image.
- The different nodes share parameters, since we use the same convolution kernel across the entire image.
- As a result, a convolution layer has fq^2 parameters, which is much less than a corresponding fully connected layer with $(pp_l)^2$ parameters.
- Since pooling reduces the image size, we can in the next stage use more filters without increasing the total number of nodes.
- Pooling makes the output less sensitive to small translations of the input.
- Another variant of pooling is to take the max across different learned features. This can make the output invariant to other things, such as rotations.



- The first layer has f = 2 filters, the second has f = 4, the third has f = 4.
- Each pooling stage uses r = 4.
- The final hidden layer is a usual fully connected layer.

```
Convolutional neural networks
```

David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG Comments

- A CNN is a method for image classification using filtered images as features, but where we do not need to specify features manually.
- Using CNNs for image classification re-popularized neural networks around 2010, and "Deep learning" was coined as a flashy name for using "deep" neural networks with more than one hidden layer.
- For further details on neural networks, for example see:
 - ① Computer age statistical inference by Efron and Hastie
 - @ deeplearningbook.org
 - Matlab guides: Create simple deep learning network for classification