
Lecture 11: Neural networks
Spatial Statistics and Image Analysis

David Bolin

University of Gothenburg

Gothenburg

May 13, 2019

Neural nets

• A problem with the methods for image classification from last

time is the need for feature selection.

• Neural networks is a class of methods that can be used to

design classifiers without the need to select features.

• Let us start with the binary classification problem: We have an

image x with pixels x1, . . . , xp, which can belong to one of

two classes.

• Model:

y1= P(z = 0|x) = f(x;✓),

y2 = P(z = 1|x) = 1� f(x;✓)

for some non-linear function of the pixel values.

• Likelihood for training the model from M images:

`(✓) =
MY

i=1

f(xi;✓)
zi(1� f(xi;✓)

zi)1�zi
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A single-layer neural net

• The idea of neural nets is to approximate f(x) as a sequence

of “ ‘simple” non-linear functions.

• Let’s look at a single-layer model first.

• Start by forming p1 different linear combinations of the data:

W(1)
1 · x,W(1)

2 · x, . . . ,W(1)
p1 · x

where W(1)
k are weights and W(1)

k · x = w(1)
k0 +

Pp
i=1w

(1)
ki xi.

• To each linear combination, apply a non-linear function g(1):

↵1 = g(1)(W(1)
1 ·x),↵2 = g(1)(W(1)

2 ·x), . . . ,↵p1 = g(1)(W(1)
p1 ·x)

• Finally approximate y1 and y2 as a transformed linear

combinations of these values:

y1 = g(2)1 (W(2)
1 ·↵,W(2)

2 ·↵), y2 = g(2)2 (W(2)
1 ·↵,W(2)

2 ·↵)
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• To make sure that y1, y2 are probabilities, we take g(2)(x) as

the softmax function: g(2)k (x1, x2) =
exkP2
l=1 e

xl
.

• We can represent this model as a network:

Input layer L1 Hidden layer L2 Output layer L3

W (1) W (2)

↵

x1

x2

x3

y1

y2

• This is a feed-forward network since information only flows

forward in the network.

• The nodes in the hidden layer are called neurons.

• The functions g(1) and g(2) are called activation functions.
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A single-layer neural net

• Our model for y1 = f(x) is thus

f(x) =
ez1

ez1 + ez2
, zk = w(2)

k0 +
pX

i=1

w(2)
ki g

(1)

0

@w(1)
i0 +

pX

j=1

w(1)
ij xi

1

A

where all the weights w should be estimated to give a good fit.

• The main idea of neural networks is that we should be able to

approximate any function f(x) in this way:

The universal approximation theorem
A feed-forward network with a single hidden layer containing a

finite number of neurons can approximate continuous functions on

compact subsets of Rn
, under mild assumptions on the activation

function.
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General feed-forward neural nets for classification

• Input data x1, . . . , xp. Output: probabilities for K classes.

• In total L� 1 hidden layers in the model.

• We can allow for a non-linear transformation of the input data

in the Input layer, giving ↵(1)
k = g(0)(xk).

• Usually we set g(0) to the identity function but keep the

notation ↵(1)
k = xk to simplify the formulas.

• At layer k in the model, define linear combination of the

neurons in previous layers, and new neuron values:

z(l)l = w(l�1)
k0 +

pl�1X

j=1

w(l�1)
kj ↵(l�1)

j := W (l�1)↵(l�1)

↵(l)= g(l)(z(l))

for l = 1, . . . , L, where p1 = p, and ↵(1) = x.
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Example for binary classification

Input layer L1 Hidden layer L2 Hidden layer L3 Hidden layer L4 Output layer L5

W (1)

W (2)

W (3)

W (4)
↵(1)

↵(2)

↵(3) ↵(4)

↵(5)

x1

x2

x3

y1

y2
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Comments

• The output probabilities are given by ↵(L)
.

• Common activation functions for the internal layers:

• Rectified linear: g(v) = max(0, v). Sometimes called Rectified

Linear Unit (RELU).

• Sigmoid function: g(v) = 1
1+e�v . Sometimes called a radial

basis function (RBF network).

• g(v) = tanh(v).

• Common activation function for the output layer for

classification:

• Softmax gi(v1, . . . , vK) = exp(vi)PK
k=1 exp(vk)

.

• Symmetric version of the logit link used for logistic regression.

• The neural network is nothing else than a hierarchically

specified non-linear regression. Compare with logistic

regression.
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Parameter estimation

• The neural network defines a nonlinear function f(x,W ) of

the input variables x, depending on the unknown weights

W = {W (1),W (2), . . . ,W (L)
}.

• To estimate W , for some input data {xi, yi}Mi=1, we can define

a loss-function R(y, f(x,W )) and compute

Ŵ = argmin
W

MX

i=1

R(yi, f(xi,W ))

Simple examples of L:

• For regression: Squared loss

R(y, f(x,W )) = 1
2ky � f(x,W )k2.

• For classification: Cross-entropy loss

R(y, f(x,W )) =
PK

k=1 1(y = k) log fk(x,W ).

• Estimate W using gradient-descent.
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Regularization

• Neural networks in general have too many parameters and will

overfit the data.

• An early solution to this problem was to stop the

gradient-based estimation before convergence.

• A validation dataset can be used to determine when to stop.

• A more explicit method for regularization is to include a

penalty on the weights in the loss-function:

• The neural network defines a nonlinear function f(x,W ) of

the input variables x, depending on the unknown weights

Ŵ = argmin
W

MX

i=1

R(yi, f(xi,W )) + �J(W )

• A common example is the weight-decay penalty:

J(W ) =
P

j,l,k(w
(l)
k,j)

2
which will pull the weights to zero.

• � is a tuning parameter: estimate using cross-validation.
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Backpropagation
The gradient of L can be estimated using the chain rule.

1 Feed forward pass: Compute ↵(l)
k for each layer l and each

node k based on the current estimate of W .

2 For the output layer, compute

�(L)k =
@R

@ z(L)k

=
@R

@ ↵(L)
k

@ ↵(L)
k

@ z(L)k

=
@R

@ ↵(L)
k

ġ(L)(z(L)k )

3 For l = L� 1, . . . , 2, compute

�(l)k =

0

@
pl+1X

j=1

w(l)
kj �

(l+1)
j

1

A ġ(l)(z(l)k )

4 Compute
@R

@ w
(l)
kj

= ↵(l)
j �(l+1)

k
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Gradient descent

• Update w(l)
kj using a gradient descent step. Assuming

weight-decay penalty:

w(l)
kj  w(l)

kj � �

0

@ @R

@ w(l)
kj

+ �w(l)
kj

1

A

• We need a lot of data to estimate these models, and for large

datasets, the computation of
@R

@ w
(l)
kj

is expensive: For M

training images with p pixels, and a network with N hidden

units, O(pMN) operations are needed.
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Stochastic gradient descent

To speed up the estimation, it is common to replace the exact

gradient by a stochastic estimate:

• Option 1: Define G(W ) = 1
s

PM
i=1 Ji

@R
@W (l) , where Ji are

independent Be(s) random variables. Thus, we are randomly

selecting (on average) 100s% of the images in each iteration.

Then

E(G(W )) =
1

s

MX

i=1

E(Ji)
@R

@W (l)
=

MX

i=1

@R

@W (l)

• Option 2: Divide the training data into m batches and

randomly sample one of the batches in each iteration.

There are several other tricks to speed up convergence, such as

momentum updates.
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Convolutional Neural networks

• Often, a fully connected network simply has too many

parameters: For the first single-layer network for binary

classification, we have pp1 + 2p1 unknown weights.

p = p1 = 1000 thus gives 1002000 unknown parameters!

• The problem is that we have a separate weight between each

pixel and each hidden node.

• The idea of Convolutional neural networks is to reduce the

number of parameters by assuming that most of the weights

are zero, and that the non-zero weights have a common

structure.

• A CNN assumes that the input data has a lattice structure,

like an image.

• Consists of a special type of layers called convolution layers,

which are based on filtering the image with a kernel.
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Convolution layers

A convolution layer has three stages:

1 Convolution stage: Convolve each input image with f different

linear filters, with kernels of size q ⇥ q, producing f output

images.

2 Detector stage: Apply a non-linear function to each image.

Typically the rectified linear function g(v) = max(0, v).

3 Pooling stage: For each image, reduce each non-overlapping

block of r ⇥ r pixels to one single value, by for example taking

the largest value in the block.

Input image Output
images

Convolution layer

Convolution stage Detector stage Pooling stage
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Comments

• One could view the convolution stage as a regular layer where

most of the weights are zero: A pixel in the output image only

depends on the q ⇥ q nearest pixels in the input image.

• The different nodes share parameters, since we use the same

convolution kernel across the entire image.

• As a result, a convolution layer has fq2 parameters, which is

much less than a corresponding fully connected layer with

(ppl)2 parameters.

• Since pooling reduces the image size, we can in the next stage

use more filters without increasing the total number of nodes.

• Pooling makes the output less sensitive to small translations of

the input.

• Another variant of pooling is to take the max across different

learned features. This can make the output invariant to other

things, such as rotations.
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Example of a CNN

Input image
256 ⇥ 256

Convolution
layer

64 ⇥ 64 ⇥ 2

Convolution
layer

16 ⇥ 16 ⇥ 8

Convolution
layer

4 ⇥ 4 ⇥ 32

Vectorize
512 ⇥ 1

...

L5

Output
layer

• The first layer has f = 2 filters, the second has f = 4, the

third has f = 4.

• Each pooling stage uses r = 4.

• The final hidden layer is a usual fully connected layer.

Convolutional neural networks David Bolin

Comments

• A CNN is a method for image classification using filtered

images as features, but where we do not need to specify

features manually.

• Using CNNs for image classification re-popularized neural

networks around 2010, and “Deep learning” was coined as a

flashy name for using “deep” neural networks with more than

one hidden layer.

• For further details on neural networks, for example see:

1 Computer age statistical inference by Efron and Hastie

2 deeplearningbook.org
3 Matlab guides: Create simple deep learning network for

classification
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