
Lecture 11: Neural networks
Spatial Statistics and Image Analysis

David Bolin

University of Gothenburg

Gothenburg

May 13, 2019

Neural nets

• A problem with the methods for image classification from last

time is the need for feature selection.

• Neural networks is a class of methods that can be used to

design classifiers without the need to select features.

• Let us start with the binary classification problem: We have an

image x with pixels x1, . . . , xp, which can belong to one of

two classes.

• Model:

y1= P(z = 0|x) = f(x;✓),

y2 = P(z = 1|x) = 1� f(x;✓)

for some non-linear function of the pixel values.

• Likelihood for training the model from M images:

`(✓) =
MY

i=1

f(xi;✓)
zi(1� f(xi;✓)

zi)1�zi

Nerual networks David Bolin

A single-layer neural net

• The idea of neural nets is to approximate f(x) as a sequence

of “ ‘simple” non-linear functions.

• Let’s look at a single-layer model first.

• Start by forming p1 different linear combinations of the data:

W(1)
1 · x,W(1)

2 · x, . . . ,W(1)
p1 · x

where W(1)
k are weights and W(1)

k · x = w(1)
k0 +

Pp
i=1w

(1)
ki xi.

• To each linear combination, apply a non-linear function g(1):

↵1 = g(1)(W(1)
1 ·x),↵2 = g(1)(W(1)

2 ·x), . . . ,↵p1 = g(1)(W(1)
p1 ·x)

• Finally approximate y1 and y2 as a transformed linear

combinations of these values:

y1 = g(2)1 (W(2)
1 ·↵,W(2)

2 ·↵), y2 = g(2)2 (W(2)
1 ·↵,W(2)

2 ·↵)

Nerual networks David Bolin

• To make sure that y1, y2 are probabilities, we take g(2)(x) as

the softmax function: g(2)k (x1, x2) =
exkP2
l=1 e

xl
.

• We can represent this model as a network:

Input layer L1 Hidden layer L2 Output layer L3

W (1) W (2)

↵

x1

x2

x3

y1

y2

• This is a feed-forward network since information only flows

forward in the network.

• The nodes in the hidden layer are called neurons.

• The functions g(1) and g(2) are called activation functions.

Nerual networks David Bolin

A single-layer neural net

• Our model for y1 = f(x) is thus

f(x) =
ez1

ez1 + ez2
, zk = w(2)

k0 +
pX

i=1

w(2)
ki g

(1)

0

@w(1)
i0 +

pX

j=1

w(1)
ij xi

1

A

where all the weights w should be estimated to give a good fit.

• The main idea of neural networks is that we should be able to

approximate any function f(x) in this way:

The universal approximation theorem
A feed-forward network with a single hidden layer containing a

finite number of neurons can approximate continuous functions on

compact subsets of Rn
, under mild assumptions on the activation

function.

Nerual networks David Bolin

General feed-forward neural nets for classification

• Input data x1, . . . , xp. Output: probabilities for K classes.

• In total L� 1 hidden layers in the model.

• We can allow for a non-linear transformation of the input data

in the Input layer, giving ↵(1)
k = g(0)(xk).

• Usually we set g(0) to the identity function but keep the

notation ↵(1)
k = xk to simplify the formulas.

• At layer k in the model, define linear combination of the

neurons in previous layers, and new neuron values:

z(l)l = w(l�1)
k0 +

pl�1X

j=1

w(l�1)
kj ↵(l�1)

j := W (l�1)↵(l�1)

↵(l)= g(l)(z(l))

for l = 1, . . . , L, where p1 = p, and ↵(1) = x.

Nerual networks David Bolin

Example for binary classification

Input layer L1 Hidden layer L2 Hidden layer L3 Hidden layer L4 Output layer L5

W (1)

W (2)

W (3)

W (4)
↵(1)

↵(2)

↵(3) ↵(4)

↵(5)

x1

x2

x3

y1

y2

Nerual networks David Bolin

Comments

• The output probabilities are given by ↵(L)
.

• Common activation functions for the internal layers:

• Rectified linear: g(v) = max(0, v). Sometimes called Rectified

Linear Unit (RELU).

• Sigmoid function: g(v) = 1
1+e�v . Sometimes called a radial

basis function (RBF network).

• g(v) = tanh(v).

• Common activation function for the output layer for

classification:

• Softmax gi(v1, . . . , vK) = exp(vi)PK
k=1 exp(vk)

.

• Symmetric version of the logit link used for logistic regression.

• The neural network is nothing else than a hierarchically

specified non-linear regression. Compare with logistic

regression.

Nerual networks David Bolin

Parameter estimation

• The neural network defines a nonlinear function f(x,W) of

the input variables x, depending on the unknown weights

W = {W (1),W (2), . . . ,W (L)
}.

• To estimate W , for some input data {xi, yi}Mi=1, we can define

a loss-function R(y, f(x,W)) and compute

Ŵ = argmin
W

MX

i=1

R(yi, f(xi,W))

Simple examples of L:

• For regression: Squared loss

R(y, f(x,W)) = 1
2ky � f(x,W)k2.

• For classification: Cross-entropy loss

R(y, f(x,W)) =
PK

k=1 1(y = k) log fk(x,W).

• Estimate W using gradient-descent.

Parameter estimation David Bolin

Regularization

• Neural networks in general have too many parameters and will

overfit the data.

• An early solution to this problem was to stop the

gradient-based estimation before convergence.

• A validation dataset can be used to determine when to stop.

• A more explicit method for regularization is to include a

penalty on the weights in the loss-function:

• The neural network defines a nonlinear function f(x,W) of

the input variables x, depending on the unknown weights

Ŵ = argmin
W

MX

i=1

R(yi, f(xi,W)) + �J(W)

• A common example is the weight-decay penalty:

J(W) =
P

j,l,k(w
(l)
k,j)

2
which will pull the weights to zero.

• � is a tuning parameter: estimate using cross-validation.

Parameter estimation David Bolin

Backpropagation
The gradient of L can be estimated using the chain rule.

1 Feed forward pass: Compute ↵(l)
k for each layer l and each

node k based on the current estimate of W .

2 For the output layer, compute

�(L)k =
@R

@ z(L)k

=
@R

@ ↵(L)
k

@ ↵(L)
k

@ z(L)k

=
@R

@ ↵(L)
k

ġ(L)(z(L)k)

3 For l = L� 1, . . . , 2, compute

�(l)k =

0

@
pl+1X

j=1

w(l)
kj �

(l+1)
j

1

A ġ(l)(z(l)k)

4 Compute
@R

@ w
(l)
kj

= ↵(l)
j �(l+1)

k

Parameter estimation David Bolin

Gradient descent

• Update w(l)
kj using a gradient descent step. Assuming

weight-decay penalty:

w(l)
kj w(l)

kj � �

0

@ @R

@ w(l)
kj

+ �w(l)
kj

1

A

• We need a lot of data to estimate these models, and for large

datasets, the computation of
@R

@ w
(l)
kj

is expensive: For M

training images with p pixels, and a network with N hidden

units, O(pMN) operations are needed.

Parameter estimation David Bolin

Stochastic gradient descent

To speed up the estimation, it is common to replace the exact

gradient by a stochastic estimate:

• Option 1: Define G(W) = 1
s

PM
i=1 Ji

@R
@W (l) , where Ji are

independent Be(s) random variables. Thus, we are randomly

selecting (on average) 100s% of the images in each iteration.

Then

E(G(W)) =
1

s

MX

i=1

E(Ji)
@R

@W (l)
=

MX

i=1

@R

@W (l)

• Option 2: Divide the training data into m batches and

randomly sample one of the batches in each iteration.

There are several other tricks to speed up convergence, such as

momentum updates.

Parameter estimation David Bolin

Convolutional Neural networks

• Often, a fully connected network simply has too many

parameters: For the first single-layer network for binary

classification, we have pp1 + 2p1 unknown weights.

p = p1 = 1000 thus gives 1002000 unknown parameters!

• The problem is that we have a separate weight between each

pixel and each hidden node.

• The idea of Convolutional neural networks is to reduce the

number of parameters by assuming that most of the weights

are zero, and that the non-zero weights have a common

structure.

• A CNN assumes that the input data has a lattice structure,

like an image.

• Consists of a special type of layers called convolution layers,

which are based on filtering the image with a kernel.

Convolutional neural networks David Bolin

Convolution layers

A convolution layer has three stages:

1 Convolution stage: Convolve each input image with f different

linear filters, with kernels of size q ⇥ q, producing f output

images.

2 Detector stage: Apply a non-linear function to each image.

Typically the rectified linear function g(v) = max(0, v).

3 Pooling stage: For each image, reduce each non-overlapping

block of r ⇥ r pixels to one single value, by for example taking

the largest value in the block.

Input image Output
images

Convolution layer

Convolution stage Detector stage Pooling stage

Convolutional neural networks David Bolin

Comments

• One could view the convolution stage as a regular layer where

most of the weights are zero: A pixel in the output image only

depends on the q ⇥ q nearest pixels in the input image.

• The different nodes share parameters, since we use the same

convolution kernel across the entire image.

• As a result, a convolution layer has fq2 parameters, which is

much less than a corresponding fully connected layer with

(ppl)2 parameters.

• Since pooling reduces the image size, we can in the next stage

use more filters without increasing the total number of nodes.

• Pooling makes the output less sensitive to small translations of

the input.

• Another variant of pooling is to take the max across different

learned features. This can make the output invariant to other

things, such as rotations.

Convolutional neural networks David Bolin

Example of a CNN

Input image
256 ⇥ 256

Convolution
layer

64 ⇥ 64 ⇥ 2

Convolution
layer

16 ⇥ 16 ⇥ 8

Convolution
layer

4 ⇥ 4 ⇥ 32

Vectorize
512 ⇥ 1

...

L5

Output
layer

• The first layer has f = 2 filters, the second has f = 4, the

third has f = 4.

• Each pooling stage uses r = 4.

• The final hidden layer is a usual fully connected layer.

Convolutional neural networks David Bolin

Comments

• A CNN is a method for image classification using filtered

images as features, but where we do not need to specify

features manually.

• Using CNNs for image classification re-popularized neural

networks around 2010, and “Deep learning” was coined as a

flashy name for using “deep” neural networks with more than

one hidden layer.

• For further details on neural networks, for example see:

1 Computer age statistical inference by Efron and Hastie

2 deeplearningbook.org
3 Matlab guides: Create simple deep learning network for

classification

Convolutional neural networks David Bolin

