Lecture 2: Random fields Spatial statistics and image analysis

David Bolin University of Gothenburg

> Gothenburg March 27, 2019

UNIVERSITY OF GOTHENBURG

CHALMERS

Random fields

- We have measurements y_i, \ldots, y_n taken at some spatial locations s_1, \ldots, s_n .
- Given that we also have some explanatory variables B_1, \ldots, B_K , we could use a regression model

$$Y_i = \sum_{k=1}^K B_k(s_i)\beta_k + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma^2)$$

- The explanatory variables can often not capture all dependence for spatial data.
- Therefore, we would like to capture this additional dependence through a random field X(s) in the model,

$$Y_i = \sum_{k=1}^K B_k(s_i)\beta_k + X(s_i) + \varepsilon_i.$$

• Today we will see how we can define this quantity.

UNIVERSITY OF GOTHENBURG

CHALMERS

Finite dimensional distributions

- Let $D \subseteq \mathbb{R}^d$ be a spatial domain of interest.
- $X(\mathbf{s})$, $\mathbf{s} \in D$, can be thought of as a function-valued random variable, with realisations $X(\mathbf{s},\omega)$ where $\omega \in \Omega$, and Ω is some abstract sample space.
- Fixing a set of locations $\{s_1, \ldots, s_n\}$,

$$\mathbf{X} = (X(\mathbf{s}_1), \dots, X(\mathbf{s}_n))^T$$

is a multivariate random variable.

• The distribution of the process is given by the collection of the finite dimensional distributions

$$F(x_1,\ldots,x_n;\mathbf{s}_1,\ldots,\mathbf{s}_n)=\mathsf{P}(X(\mathbf{s}_1)\leq x_1,\ldots,X(\mathbf{s}_n)\leq x_n)$$

for all $n < \infty$ and every set of locations $\{s_1, \dots, s_n\}$.

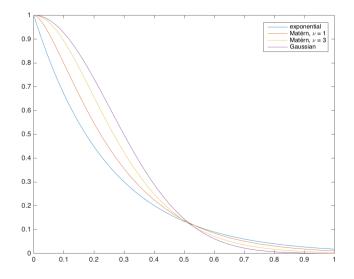
 Kolmogorov existence theorem: The model is valid if the family of finite-dimensional distributions is consistent under reorderings and marginalizations (see Billingsley 1986).

Random fields David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Matérn covariances



Random fields David Bolin Examples David Bolin

UNIVERSITY OF GOTHENBURG

0.9

0.8

0.6

0.5

0.4

0.3

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

 $\nu = 2$, $\kappa = 10$, $\sigma = 1$

 $0.2 \quad 0.4 \\ \nu = 2, \kappa = 40, \sigma = 1$

0.2

0.4

CHALMERS

Realisation

0.4 0.6 Realisation UNIVERSITY OF GOTHENBURG

CHALMERS

Compactly supported covariance functions

• Euclid's hat covariance function:

$$r_0(h) = \begin{cases} \sigma^2 I_{\frac{n+1}{2}, \frac{1}{2}} (1 - h^2/\theta^2) & h \le \theta \\ 0 & h > \theta \end{cases}$$

where

$$I_{\frac{n+1}{2},\frac{1}{2}}(x) = \frac{\int_0^x \sqrt{t^{n-1}(1-t)^{-1}}dt}{\int_0^1 \sqrt{t^{n-1}(1-t)^{-1}}dt}$$

is the regularized incomplete beta function.

- It is a valid covariance for \mathbb{R}^d for $n \geq d$.
- ullet n=3 gives us the popular spherical covariance function:

$$r_0(h) = \begin{cases} \sigma^2 (1 - \frac{3}{2} \frac{h}{\theta} + \frac{1}{2} \frac{h^3}{\theta^3}), & h \le \theta \\ 0 & h > \theta \end{cases}$$

Examples David Bolin

0.2

0.6

0.1

0.2

0.3

0.5

0.6

0.7

0.8

0.9

0.2

0.3

0.5

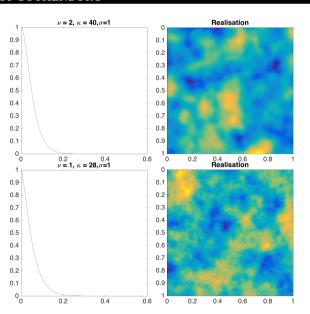
0.6

Examples

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS



UNIVERSITY OF GOTHENBURG

CHALMERS

Euclid's hat with $\theta = 1$

