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Random fields

We have measurements vy, ..., ¥y, taken at some spatial
locations s1, ..., Sy.
Given that we also have some explanatory variables

By,..., Bk, we could use a regression model

K
Y; = Bi(si)Bx+ei, e ~N(0,07)
k=1
The explanatory variables can often not capture all
dependence for spatial data.
Therefore, we would like to capture this additional dependence
through a random field X (s) in the model,

K

Yi = Bi(si)Bk+ X(si) + i
k=1

Today we will see how we can define this quantity.
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Finite dimensional distributions

e Let D C R? be a spatial domain of interest.

Random fields
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X (s), s € D, can be thought of as a function-valued random
variable, with realisations X (s,w) where w € Q, and € is some
abstract sample space.

Fixing a set of locations {s1,...,sp},

X = (X(S1>,...,X(Sn))T

is a multivariate random variable.
The distribution of the process is given by the collection of the
finite dimensional distributions

F(z1,...,Zn;81,...,8p) = P(X(s1) < 21,...,X(sp) < xy)

for all n < oo and every set of locations {si,...,s,}.
Kolmogorov existence theorem: The model is valid if the
family of finite-dimensional distributions is consistent under
reorderings and marginalizations (see Billingsley 1986).
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Matérn covariances

Examples

exponential

Matérn, v =1
Matérn, v =3| 7
Gaussian
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Realisation
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Compactly supported covariance functions

e Euclid’s hat covariance function:

(1-h2%/6%) h<0

2
ro(h) =47 Togr 1
0 h>0
where .
i1 — )~ 1dt
IL-H 1(55) _ fO ( )
2 2

/T — ) Tdt
is the regularized incomplete beta function.

e |t is a valid covariance for R® for n > d.
® n = 3 gives us the popular spherical covariance function:

3
o?(1—34 410 h<o

h:
ro(h) =9, h>0
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Euclid's hat with 0 = 1
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