Lecture 3: Kriging and parameter estimation Spatial Statistics and Image Analysis

David Bolin University of Gothenburg

> Gothenburg April 1, 2019

UNIVERSITY OF GOTHENBURG

CHALMERS

Gaussian random fields

- A random field $X(\mathbf{s})$ is Gaussian if $(X(\mathbf{s}_1), \dots, X(\mathbf{s}_n))^T$ has a multivariate Gaussian distribution for each choice of $\mathbf{s}_1, \dots, \mathbf{s}_n$.
- X(s) is uniquely specified by
 - 1 The mean value function $\mu(s) = E(X(s))$, and
 - 2 The covariance function $r(\mathbf{s}_1, \mathbf{s}_2) = C(X(\mathbf{s}_1), X(\mathbf{s}_2))$.
- $X(\mathbf{s})$ is
 - **1** stationary if $\mu(s) \equiv \mu$ and if $r(s_1, s_2)$ depends only on the separation between the locations, $h = s_1 s_2$.
 - **② isotropic** if $\mu(s) \equiv \mu$ and if $r(s_1, s_2)$ only depends on the distance between the locations, $h = ||s_1 s_2||$.
- Examples of isotropic covariance functions:
 - **1** Matérn: $r(h) = \frac{\sigma^2}{\Gamma(\nu) 2^{\nu-1}} (\kappa h)^{\nu} K_{\nu}(\kappa h)$
 - **2** Exponential: $r(h) = \sigma^2 \exp(-\kappa h)$
 - **3** Spherical: $r(h) = \sigma^2(1 \frac{3}{2}\frac{h}{\theta} + \frac{1}{2}\frac{h^3}{\theta^3})$, if $h \le \theta$ and r(h) = 0 otherwise.

UNIVERSITY OF GOTHENBURG

CHALMERS

Semivariograms

- In geostatistics, it is common do describe random fields in terms of semivariograms instead of covariance functions.
- For a random field X(s), the semivariogram is defined as

$$\gamma(\mathbf{s}, \mathbf{t}) = \frac{1}{2} \mathsf{V}(X(\mathbf{s}) - X(\mathbf{t}))$$

and the variogram is V(X(s) - X(t)).

• For an isotropic random field with covariance r(h), the semivariogram is

$$\gamma(h) = r(0) - r(h)$$

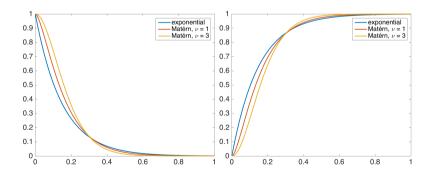
(exersice!)

Title page David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

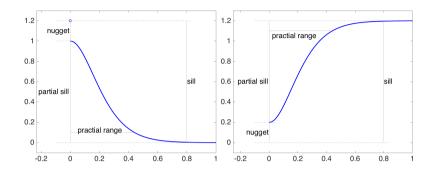
Matérn variograms



UNIVERSITY OF GOTHENBURG

CHALMERS

Some terminology



Title page David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Statistical models including random fields

- We have measurements y_i, \ldots, y_n taken at some spatial locations s_1, \ldots, s_n .
- Given that we also have some explanatory variables B_1, \ldots, B_K , we use a model

$$Y_i = \sum_{k=1}^K B_k(s_i)\beta_k + X(s_i) + \varepsilon_i.$$

where X(s) is a mean-zero Gaussian random field.

- Questions:
 - How do we estimate the parameters of the model?
 - 2 How can we perform prediction for an unobserved location s_0 ?

Image analysis applications

Image reconstruction

Noise reduction

Title page David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Conditional distributions

For a multivariate Gaussian variable

$$\begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \sim \mathsf{N} \left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \right)$$

we have that

Title page

$$\mathbf{X}_2|\mathbf{X}_1 \sim \mathsf{N}(\boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{X}_1 - \boldsymbol{\mu}_1), \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12})$$

If X_2 represents a random field at some unobserved locations, and X_1 the observations, the conditional mean

$$\mathsf{E}(\mathbf{X}_2|\mathbf{X}_1) = \boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{X}_1 - \boldsymbol{\mu}_1)$$

is often called the Kriging predictor.

Title page David Bolin

UNIVERSITY OF GOTHENBURG

Covariates

CHALMERS

Kriging prediction

Traditionally, one has separated between three cases

- Simple kriging: $\mu(s) = \mathbf{B}(s)\boldsymbol{\beta}$ is known.
- Ordinary kriging: $\mu(s) = \beta$ is unknown but constant.
- Universal kriging: $\mu(s) = \mathbf{B}(s)\beta$ is unknown.

For ordinary and universal kriging, we have to estimate the mean-value together with the covariance parameters θ before computing the prediction.

So we have to

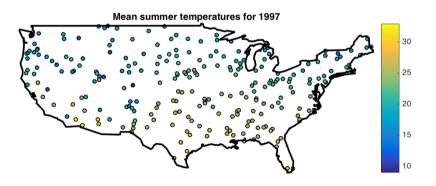
- Estimate the model parameters $\{\beta, \sigma_e^2, \theta\}$.
- Given the parameters, compute the kriging prediction.

Title page David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Example: US temperatures

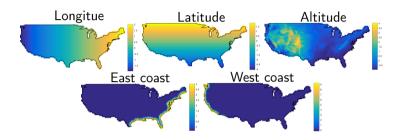


- Mean summer temperatures (June-August) in the continental US 1997 recorded at 250 weather stations.
- We want to estimate all US temperatures based on the data.

• A first idea is to use linear regression to interpolate the data:

$$Y(\mathbf{s}) = \sum_{i=1}^k \beta_i B_i(\mathbf{s}) + \varepsilon_\mathbf{s}, \quad \text{where } \varepsilon_\mathbf{s} \text{ are iid } \mathsf{N}(0,\sigma^2)$$

Possible covariates



Example David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

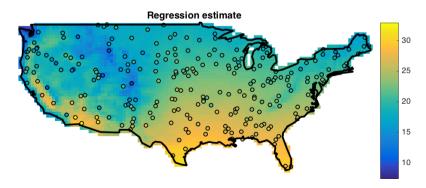
OLS estimate

• Estimate the parameters using ordinary least squares:

$$\hat{\boldsymbol{\beta}} = (\mathbf{B}^{\top} \mathbf{B})^{-1} \mathbf{B}^{\top} \mathbf{Y},$$

where $\mathbf{B}_{ij} = B_i(\mathbf{s}_j)$ and $\mathbf{Y}_i = Y(\mathbf{s}_i)$.

• Calculate the prediction $\hat{X}(\mathbf{s}) = \sum_{i=1}^{k} \hat{\beta}_i B_i(\mathbf{s})$.

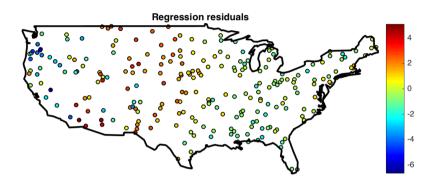


UNIVERSITY OF GOTHENBURG Regression parameters

CHALMERS

Residudals

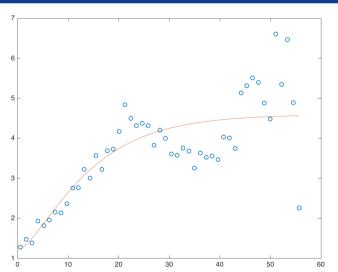
- How do we test whether the prediction is reasonable?
- If the model assumptions hold, the residuals $Y(s) \hat{X}(s)$ should be independent identically distributed.



Example David Bolin

CHALMERS

UNIVERSITY OF GOTHENBURG Variogram estimate



Update regression parameters using GLS:

$$\hat{\boldsymbol{\beta}}_{GLS} = (\mathbf{B}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{B})^{-1} \mathbf{B}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{Y},$$

Confidence interval for β_i :

$$I_{\beta_i} = (\hat{\beta}_i \pm 1.96\sqrt{V_{ii}})$$

where
$$\mathbf{V} = (\mathbf{B}^{\top} \mathbf{\Sigma}^{-1} \mathbf{B})^{-1}$$
.

	OLS	GLS
Intercept	21.6317*	20.4688*
Longitude	-1.2897*	-1.0022
Latitude	-2.6959*	-2.6845*
Altitude	-2.6693*	-4.2177*
East coast	-0.0952	-0.0096
West coast	-1.3064*	-1.0139*

David Bolin Example

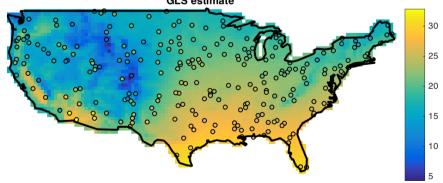
UNIVERSITY OF GOTHENBURG

CHALMERS

Kriging estimation

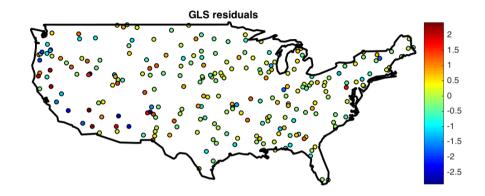
The kriging estimator is

$$\begin{split} \mathsf{E}(X(\mathbf{s})|\mathbf{Y},\hat{\boldsymbol{\theta}}) &= \hat{\mu}(\mathbf{s}) + \mathbf{r}(\boldsymbol{\Sigma} + \sigma_e^2 \mathbf{I})^{-1}(\mathbf{Y} - \mathbf{B}\hat{\boldsymbol{\beta}}) \\ \text{where } \boldsymbol{\Sigma}_{ij} &= r(\mathbf{s}_i, \mathbf{s}_j), \ \mathbf{r}_i = r(\mathbf{s}, \mathbf{s}_i), \ \text{and} \ \hat{\boldsymbol{\mu}} = \sum_{k=1}^K B_k(\mathbf{s})\hat{\beta}_k. \end{split}$$



Kriging residuals

There is now less spatial structure in the residuals.

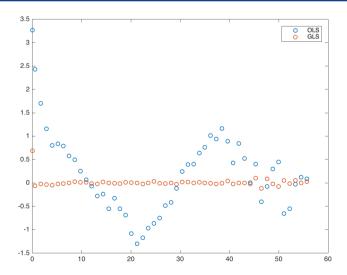


Example David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Empirical covariances of residuals



Example David Bolin