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Sparsity using reorderings
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University of Gothenburg ® Finding the optimal reordering is an NP-hard problem, but

there are many fast methods for finding good reorderings.
® The approximate minimum degree (AMD) reordering is

Gothenb
ure generally a good option.
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® The images above are obtained with reo = amd(Q) in Matlab.

® |f you use reorderings, remember to also reorder the
observations, covariates, etc. using the same reordering.
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Sparsity of Q and R Computing z = Qv

Three ways of computing Q~'v in Matlab:

o Q o Chol(Q)
o o x1 = Q\v;
300 300
o o reo = and(Q);
600 600 R = Chol(Q(reo,reo));
233 :ZZ x2(reo) = R\(R’\v(reo0));
9000 200 400 600 800 » 9000 200 400 600 800
nz = 4380 nz = 27029
x3(reo) = R\(v(reo)’/R)’;
® The crucial aspect of computations with GMRFs is that the
Cholesky factor R is sparse. ® For x1, Matlab automatically performs the reordering.
® However, it is often less sparse than the precision matrix Q. e Explicitly computing the reordering and Cholesky factor is
The additional non-zero nodes is usually called fill-in. needed when sampling GMRFs, and preferable if you will do
® We can reduce the fill-in by reordering the nodes. many solves with ) for different v.
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Morphological operations

Let A be a set of pixels in an image, and let S;; be a structure
element centered in pixel ij.

® Erosion of A: Ae S ={ij:S;; C A}

e Dilation of A: A® S = (A°S S)°, where A° is the
complement of the set A.

® Opening of A: ¢Yg(A) = (A6 S) DS, where S" is S rotated
180 degrees.

e Closing of A: ¢5(A)=(AdS)o S
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Morphological operations on grayscale images

Let « be a grayscale image, and S a structure element. Then
® Erosion of z: (x © 5);; = min(zyjr : i’ € Sy}
* Dilation of z: (z @ S);; = max(xy; : i'j" € Sj;}.
® Opening of z: Yg(z) = (A S)® 5.
e Closing of z: ¢g(x) =(A® S)e S
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Moment features

Let = be an iage of size m x n. The moment of order (p, q) of = is
Mpq = Z PPl
ij

The (0,0) moment, mgyp is

® The area for binary images

e the sum of gray levels for grayscale images.
The image centroid is defined as

Ty T 7])
Moo Moo

Hpg = Z(Z —)P(j - j)qmij

ij

Central moments:
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Invariant Moments

The central moments (i, are invariant to translations.

The following quantity is invariant to both translations and

scaling:
Hpq
Npg = ¥
1253

Koo
The Hu-moments are also invariant to rotations. There are 8
such moments, the first two are

Iy = m20 + Mo2
I = (120 — no2)? + 40},

® |nvariant moments are useful for image classification.
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Markov random field mixture models

e Hierarchical model for pixel values given classes:
m(Yilz = k) ~ N(pg, Z)
s If Z; = 1
9 If Z; = 2
m(zi) =
TK If Z; = K
® Assuming independence between the pixels is not realistic!
® |n a Markov random field mixture model, we use the model
T(Yilzi = k) ~ N(py,, Zi)
z ~ 7(z)
here z = (21,...,2y) is a random field that takes values in
{1,..., K}, with density 7(z).
® Spatial dependencies modeled through 7(z).
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Constructing Markov random fields

e How can we define a valid random field model for z?

e Recall that we defined GMRFs using undirected graphs
G=(E,V).

e Typically, we have the set of vertices V as the pixels in an
image, and the set of edges F defines the dependence
structure.

e We defined GMRFs using local constructions, such as the CAR
models where we specified the joint distribution through the
conditionals m(x;|z_;) = m(x;|znN;,).

® Today we will use local constructions to define discrete valued
MRFs.

® Next lecture, we will look at parameter estimation and how to
use the models for image segmentation.
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Cliques

Definition

Let G = (V, E) be an undirected graph. A clique C of G is a subset
of vertices such that every pair of vertices in C' are adjacent.

Example: a
OnONO
Cliques: a
{1}, {2}, {3}, {4}, {5}
{1,2},{1,3},{2,3},{3,4}
{1,2,3}
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Comments

The normalizing constant Z is given by summing all possible
images x:
e With K =2 and a 5 x 5 image, there are 22° = 33554432
possible images.

e We cannot compute Z for realistic images.

Sampling:
® Sampling 7(x) is difficult.

e Sampling m(x;|x_;) is very easy. Can we use this?
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Gibbs sampling

Assume that we have a distribution 7(x) = m(x1,...,z,) that we
want to sample from, where 7(z;|z_;) is easy to sample.
Algorithm:

Step 1 Choose a starting value x°.

Step 2 Repeat fori=1,...,N:
(i (i-1) (i—1)
i 5 i xn )

® Draw xg) from 7r(x2|x§i), xéiil), . ,x%il))

o Draw 2\ from 7(xy |z

©

o Draw 2 from 7T(:17n|$§i), . .,mffll)
Step 3 Use x5) ... x(N) as a sequence of dependent draws
approximately from m(x).

Under mild conditions, 7(x(")) converges to m(x).
Chose K large enough so that the chain has converged.

Markov random fields David Bolin



