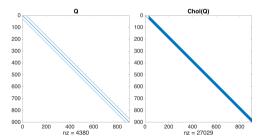
Lecture 8: Markov random fields Spatial Statistics and Image Analysis

David Bolin University of Gothenburg

> Gothenburg April 17, 2019

UNIVERSITY OF GOTHENBURG Sparsity of ${f Q}$ and ${f R}$

CHALMERS

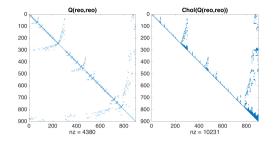


- ullet The crucial aspect of computations with GMRFs is that the Cholesky factor ${f R}$ is sparse.
- However, it is often less sparse than the precision matrix Q.
 The additional non-zero nodes is usually called fill-in.
- We can reduce the fill-in by reordering the nodes.

UNIVERSITY OF GOTHENBURG

CHALMERS

Sparsity using reorderings



- Finding the optimal reordering is an NP-hard problem, but there are many fast methods for finding good reorderings.
- The approximate minimum degree (AMD) reordering is generally a good option.
- The images above are obtained with reo = amd(Q) in Matlab.
- If you use reorderings, remember to also reorder the observations, covariates, etc. using the same reordering.

GMRFs and reorderings

UNIVERSITY OF GOTHENBURG

CHALMERS

David Bolin

Computing $x = Q^{-1}v$

Three ways of computing $Q^{-1}v$ in Matlab:

```
x1 = Q\v;
reo = amd(Q);
R = chol(Q(reo,reo));
x2(reo) = R\(R'\v(reo));

x3(reo) = R\(v(reo)'/R)';
```

- For x1, Matlab automatically performs the reordering.
- ullet Explicitly computing the reordering and Cholesky factor is needed when sampling GMRFs, and preferable if you will do many solves with Q for different v.

GMRFs and reorderings David Bolin GMRFs and reorderings David Bolin

Morphological operations on grayscale images

Morphological operations

Let A be a set of pixels in an image, and let S_{ij} be a structure element centered in pixel ij.

- Erosion of $A: A \ominus S = \{ij : S_{ij} \subset A\}.$
- Dilation of $A: A \oplus S = (A^c \ominus S)^c$, where A^c is the complement of the set A.
- Opening of A: $\psi_S(A) = (A \ominus S) \oplus S'$, where S' is S rotated 180 degrees.
- Closing of $A: \phi_S(A) = (A \oplus S) \ominus S'$.

Let x be a grayscale image, and S a structure element. Then

- Erosion of x: $(x \ominus S)_{ij} = \min(x_{i'j'} : i'j' \in S_{ij})$.
- Dilation of x: $(x \oplus S)_{ij} = \max(x_{i'j'} : i'j' \in S_{ij})$.
- Opening of x: $\psi_S(x) = (A \ominus S) \oplus S'$.
- Closing of x: $\phi_S(x) = (A \oplus S) \ominus S'$.

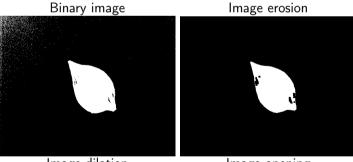
Image features David Bolin

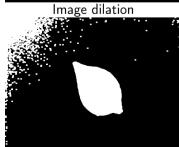
Image features

David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS





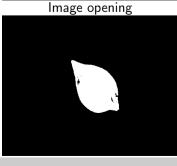


image leatures

CHALMERS

UNIVERSITY OF GOTHENBURG

Image dilation

Image erosion

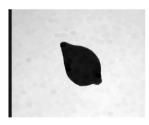


Image opening

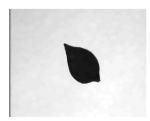


Image features David Bolin

Image features

David Bolin

Let x be an iage of size $m \times n$. The moment of order (p,q) of x is

$$m_{pq} = \sum_{ij} i^p j^q x_{ij}$$

The (0,0) moment, m_{00} is

- The area for binary images
- the sum of gray levels for grayscale images.

The image centroid is defined as

$$\left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right) := (\bar{i}, \bar{j})$$

Central moments:

$$\mu_{pq} = \sum_{ij} (i - \bar{i})^p (j - \bar{j})^q x_{ij}$$

Image features David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Invariant Moments

- The central moments μ_{pq} are invariant to translations.
- The following quantity is invariant to both translations and scaling:

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{1 + \frac{p+q}{2}}}$$

• The Hu-moments are also invariant to rotations. There are 8 such moments, the first two are

$$I_1 = \eta_{20} + \eta_{02}$$

$$I_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$$

• Invariant moments are useful for image classification.

UNIVERSITY OF GOTHENBURG

CHALMERS

Markov random field mixture models

Hierarchical model for pixel values given classes:

$$\pi(\mathbf{Y}_i|z_i=k) \sim \mathsf{N}(\pmb{\mu}_k, \pmb{\Sigma}_k)$$

$$\pi(z_i) = \begin{cases} \pi_1 & \text{if } z_i=1\\ \pi_2 & \text{if } z_i=2\\ \vdots\\ \pi_K & \text{if } z_i=K \end{cases}$$

- Assuming independence between the pixels is not realistic!
- In a Markov random field mixture model, we use the model

$$\pi(\mathbf{Y}_i|z_i = k) \sim \mathsf{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 $\mathbf{z} \sim \pi(\mathbf{z})$

here $\mathbf{z} = (z_1, \dots, z_n)$ is a random field that takes values in $\{1, \dots, K\}$, with density $\pi(\mathbf{z})$.

• Spatial dependencies modeled through $\pi(\mathbf{z})$.

Markov random fields David Bolin

UNIVERSITY OF GOTHENBURG

CHALMERS

Constructing Markov random fields

- How can we define a valid random field model for z?
- Recall that we defined GMRFs using undirected graphs $\mathcal{G} = (E, V)$.
- ullet Typically, we have the set of vertices V as the pixels in an image, and the set of edges E defines the dependence structure.
- We defined GMRFs using local constructions, such as the CAR models where we specified the joint distribution through the conditionals $\pi(x_i|x_{-i}) = \pi(x_i|x_{N_i})$.
- Today we will use local constructions to define discrete valued MRFs.
- Next lecture, we will look at parameter estimation and how to use the models for image segmentation.

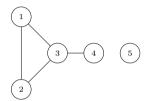
Image features David Bolin Markov random fields David Bolin

Cliques

Definition

Let $\mathcal{G} = (V, E)$ be an undirected graph. A clique C of \mathcal{G} is a subset of vertices such that every pair of vertices in C are adjacent.

Example:



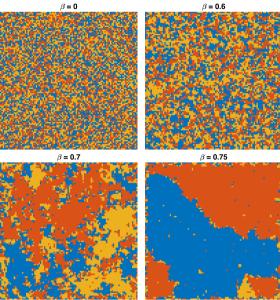
Cliques:

$$\{1\}, \{2\}, \{3\}, \{4\}, \{5\}$$
$$\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}$$
$$\{1, 2, 3\}$$

Markov random fields

David Bolin

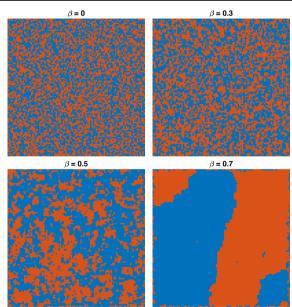
UNIVERSITY OF GOTHENBURG



David Bolin Markov random fields

UNIVERSITY OF GOTHENBURG

CHALMERS



UNIVERSITY OF GOTHENBURG

CHALMERS

Comments

The normalizing constant Z is given by summing all possible images x:

- With K=2 and a 5×5 image, there are $2^{25}=33554432$ possible images.
- We cannot compute Z for realistic images.

Sampling:

- Sampling $\pi(\mathbf{x})$ is difficult.
- Sampling $\pi(x_i|\mathbf{x}_{-i})$ is very easy. Can we use this?

Gibbs sampling

Assume that we have a distribution $\pi(\mathbf{x}) = \pi(x_1, \dots, x_n)$ that we want to sample from, where $\pi(x_i|x_{-i})$ is easy to sample. Algorithm:

Step 1 Choose a starting value x^0 .

Step 2 Repeat for i = 1, ..., N:

- $\begin{array}{l} \bullet \ \ \mathsf{Draw} \ x_1^{(i)} \ \ \mathsf{from} \ \pi(x_1|x_2^{(i-1)},\dots,x_n^{(i-1)}) \\ \bullet \ \ \mathsf{Draw} \ x_2^{(i)} \ \ \mathsf{from} \ \pi(x_2|x_1^{(i)},x_3^{(i-1)},\dots,x_n^{(i-1)}) \end{array}$

- Draw $x_n^{(i)}$ from $\pi(x_n|x_1^{(i)},\ldots,x_{n-1}^{(i)})$
- Step 3 Use $\mathbf{x}^{(K)}, \dots, \mathbf{x}^{(N)}$ as a sequence of dependent draws approximately from $\pi(\mathbf{x})$.

Under mild conditions, $\pi(\mathbf{x}^{(i)})$ converges to $\pi(\mathbf{x})$. Chose K large enough so that the chain has converged.

Markov random fields David Bolin