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Sparsity of Q and R

• The crucial aspect of computations with GMRFs is that the
Cholesky factor R is sparse.

• However, it is often less sparse than the precision matrix Q.
The additional non-zero nodes is usually called fill-in.

• We can reduce the fill-in by reordering the nodes.
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Sparsity using reorderings

• Finding the optimal reordering is an NP-hard problem, but
there are many fast methods for finding good reorderings.

• The approximate minimum degree (AMD) reordering is
generally a good option.

• The images above are obtained with reo = amd(Q) in Matlab.
• If you use reorderings, remember to also reorder the

observations, covariates, etc. using the same reordering.
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Computing x = Q�1v

Three ways of computing Q�1v in Matlab:

x1 = Q\v;

reo = amd(Q);
R = chol(Q(reo,reo));
x2(reo) = R\(R’\v(reo));

x3(reo) = R\(v(reo)’/R)’;

• For x1, Matlab automatically performs the reordering.
• Explicitly computing the reordering and Cholesky factor is

needed when sampling GMRFs, and preferable if you will do
many solves with Q for different v.
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Morphological operations

Let A be a set of pixels in an image, and let Sij be a structure
element centered in pixel ij.

• Erosion of A: A S = {ij : Sij ⇢ A}.
• Dilation of A: A� S = (Ac  S)c, where Ac is the

complement of the set A.
• Opening of A:  S(A) = (A S)� S0, where S0 is S rotated

180 degrees.
• Closing of A: �S(A) = (A� S) S0.
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Binary image Image erosion

Image dilation Image opening
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Morphological operations on grayscale images

Let x be a grayscale image, and S a structure element. Then
• Erosion of x: (x S)ij = min(xi0j0 : i0j0 2 Sij}.
• Dilation of x: (x� S)ij = max(xi0j0 : i0j0 2 Sij}.
• Opening of x:  S(x) = (A S)� S0.
• Closing of x: �S(x) = (A� S) S0.
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Moment features
Let x be an iage of size m⇥ n. The moment of order (p, q) of x is

mpq =
X

ij

ipjqxij

The (0, 0) moment, m00 is
• The area for binary images
• the sum of gray levels for grayscale images.

The image centroid is defined as
✓
m10

m00
,
m01

m00

◆
:= (̄i, j̄)

Central moments:

µpq =
X

ij

(i� ī)p(j � j̄)qxij
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Invariant Moments

• The central moments µpq are invariant to translations.
• The following quantity is invariant to both translations and

scaling:
⌘pq =

µpq

µ
1+ p+q

2
00

• The Hu-moments are also invariant to rotations. There are 8
such moments, the first two are

I1 = ⌘20 + ⌘02

I2 = (⌘20 � ⌘02)2 + 4⌘211

• Invariant moments are useful for image classification.
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Markov random field mixture models

• Hierarchical model for pixel values given classes:

⇡(Yi|zi = k) ⇠ N(µk,⌃k)

⇡(zi) =

8
>>>><

>>>>:

⇡1 if zi = 1

⇡2 if zi = 2
...
⇡K if zi = K

• Assuming independence between the pixels is not realistic!
• In a Markov random field mixture model, we use the model

⇡(Yi|zi = k) ⇠ N(µk,⌃k)

z ⇠ ⇡(z)

here z = (z1, . . . , zn) is a random field that takes values in
{1, . . . ,K}, with density ⇡(z).

• Spatial dependencies modeled through ⇡(z).
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Constructing Markov random fields

• How can we define a valid random field model for z?
• Recall that we defined GMRFs using undirected graphs

G = (E, V ).
• Typically, we have the set of vertices V as the pixels in an

image, and the set of edges E defines the dependence
structure.

• We defined GMRFs using local constructions, such as the CAR
models where we specified the joint distribution through the
conditionals ⇡(xi|x�i) = ⇡(xi|xNi).

• Today we will use local constructions to define discrete valued
MRFs.

• Next lecture, we will look at parameter estimation and how to
use the models for image segmentation.
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Cliques

Definition
Let G = (V,E) be an undirected graph. A clique C of G is a subset
of vertices such that every pair of vertices in C are adjacent.

Example:
1

2

3 4 5

Cliques:
{1}, {2}, {3}, {4}, {5}

{1, 2}, {1, 3}, {2, 3}, {3, 4}

{1, 2, 3}
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Comments

The normalizing constant Z is given by summing all possible
images x:

• With K = 2 and a 5⇥ 5 image, there are 225 = 33554432
possible images.

• We cannot compute Z for realistic images.

Sampling:
• Sampling ⇡(x) is difficult.
• Sampling ⇡(xi|x�i) is very easy. Can we use this?

Markov random fields David Bolin



Gibbs sampling
Assume that we have a distribution ⇡(x) = ⇡(x1, . . . , xn) that we
want to sample from, where ⇡(xi|x�i) is easy to sample.
Algorithm:

Step 1 Choose a starting value x0.
Step 2 Repeat for i = 1, . . . , N :

• Draw x(i)1 from ⇡(x1|x(i�1)
2 , . . . , x(i�1)

n )

• Draw x(i)2 from ⇡(x2|x(i)1 , x(i�1)
3 , . . . , x(i�1)

n )

...

• Draw x(i)n from ⇡(xn|x(i)1 , . . . , x(i)n�1)

Step 3 Use x(K), . . . ,x(N) as a sequence of dependent draws
approximately from ⇡(x).

Under mild conditions, ⇡(x(i)) converges to ⇡(x).
Chose K large enough so that the chain has converged.
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