Example: How do certain toxic agents affect survival time?

Response variable: survival time

Set up: 48 animals were randomly allocated to the 12 combinations of 3 poisons and 4 treatments, 4 animals to each cell. \rightarrow 3 × 4 factorial design.

The effects of both poison and treatment have to be considered also keeping in mind that they may interact.

 \rightarrow two-way ANOVA

ANOVA model including interaction between treatment and poison

 $\eta_{ti} = \eta + \tau_t + \pi_i + \omega_{ti},$

where

- η is the overall mean
- *τ_t* is the treatment effect (mean increment in survival time associated with the treatment *t*, *t* = *A*, *B*, *C*, *D*)
- π_i is the poison effect (mean increment in survival time associated with the poison i, i = I, II, III)
- ω_{ti} is the interaction effect.

Conclusions based on the two-way ANOVA (Table 8.2, p. 319)

- Treatment and poison have significant effect (at 0.1% level) on survival time.
- No significant interaction effect (*p*-value 0.11), i.e. difference in survival times between treatments does not depend on the poison.

After some further investigation (Table 8.3a), it seems that

- Poison III results always in the shortest survival times.
- Poison II together with treatment A or C results in smaller values than poison I but not together with treatment B or D

Remark: Model for the observations is

 $y_{tij} = \bar{y} + \tau_t + \pi_i + \omega_{ti} + \epsilon_{tij},$

where ϵ_{tij} is the random error term.

F-test is based on the assumption that the errors ϵ_{tij} are independent and $N(0, \sigma)$ -distributed. Note especially that the variance is assumed to be constant.

In the example, variances are not equal (Table 8.3b).

Two kinds of variance inhomogeneity

- inherent inhomogeneity: for example, a smaller variance achieved by an experienced person than by an inexperienced person
- transformable inhomogeneity: untransformed observations give rise to an unnecessarily complicated model with non-constant variance and (possibly) unnecessary interaction

When standard deviation σ is a function of the mean η , often one can find a data transformation that has more constant variance than the original data. For example,

1. σ is proportional to η

 \rightarrow Y = log y would stabilize the variance

2. σ is proportional to η^{α}

 $\rightarrow Y = y^{\lambda}$, where $\lambda = 1 - \alpha$, would stabilize the variance.

For example, for Poisson distributed data, where $\eta = \sigma^2$, i.e.

$$\sigma = \sqrt{\eta} = \eta^{0.5}$$

 $(\alpha = \lambda = 0.5)$, the transformation $Y = \sqrt{y}$ stabilizes the variance.

 Take one set of experimental conditions, say treatment A and poison I (this cell is denoted by *j* below), and assume that under these conditions

$\sigma_j \propto \eta_j^{lpha}.$

- 2. Then, $\log \sigma_j = \text{constant} + \alpha \log \eta_j$, and $\log \sigma_j$ plotted against $\log \eta_j$ would give a straight line with slope α .
- 3. In practise, σ_j and η_j would be replaced by their estimates s_j and \overline{y}_j , respectively.

Interpretation of the results after the transformation (example continues)

- Effect of poison and treatment on survival time even more significant than before the transformation of the data.
- ► No significant interaction between poison and treatment: Effects of poison and treatment are approximately additive when measured as rates of failure $(Y = \frac{1}{y})$
- ► Variances more equal after the transformation than before.

Some remarks:

- Transformed data and results based on them may be hard to interpret (e.g. log(kg) instead of kg)
- Other reasons to transform the data (other than obtaining constant variance)
 - to make data approximately normally distributed (reduce skewness)
 - to obtain a linear relationship
 - ► to obtain an additive relationship (y = a + bx instead of y = ax^b, needed in ANOVA)