
A two-way factorial design

Example: How do certain toxic agents affect survival time?

Response variable: survival time

Set up: 48 animals were randomly allocated to the 12
combinations of 3 poisons and 4 treatments, 4 animals to each cell.
→ 3× 4 factorial design.

The effects of both poison and treatment have to be considered
also keeping in mind that they may interact.
→ two-way ANOVA



ANOVA model including interaction between treatment and poison

ηti = η + τt + πi + ωti ,

where

I η is the overall mean

I τt is the treatment effect (mean increment in survival time
associated with the treatment t, t = A,B,C ,D)

I πi is the poison effect (mean increment in survival time
associated with the poison i , i = I , II , III )

I ωti is the interaction effect.



Conclusions based on the two-way ANOVA (Table 8.2, p. 319)

I Treatment and poison have significant effect (at 0.1% level)
on survival time.

I No significant interaction effect (p-value 0.11), i.e. difference
in survival times between treatments does not depend on the
poison.

After some further investigation (Table 8.3a), it seems that

I Poison III results always in the shortest survival times.

I Poison II together with treatment A or C results in smaller
values than poison I but not together with treatment B or D



Remark: Model for the observations is

ytij = ȳ + τt + πi + ωti + εtij ,

where εtij is the random error term.

F -test is based on the assumption that the errors εtij are
independent and N(0, σ)-distributed. Note especially that the
variance is assumed to be constant.

In the example, variances are not equal (Table 8.3b).



Two kinds of variance inhomogeneity

I inherent inhomogeneity: for example, a smaller variance
achieved by an experienced person than by an inexperienced
person

I transformable inhomogeneity: untransformed observations
give rise to an unnecessarily complicated model with
non-constant variance and (possibly) unnecessary interaction



Variance stabilizing transformations

When standard deviation σ is a function of the mean η, often one
can find a data transformation that has more constant variance
than the original data. For example,

1. σ is proportional to η
→ Y = log y would stabilize the variance

2. σ is proportional to ηα

→ Y = yλ, where λ = 1− α, would stabilize the variance.

For example, for Poisson distributed data, where η = σ2, i.e.

σ =
√
η = η0.5

(α = λ = 0.5), the transformation Y =
√
y stabilizes the

variance.



How to find α?

1. Take one set of experimental conditions, say treatment A and
poison I (this cell is denoted by j below), and assume that
under these conditions

σj ∝ ηαj .

2. Then, log σj = constant + α log ηj , and log σj plotted against
log ηj would give a straight line with slope α.

3. In practise, σj and ηj would be replaced by their estimates sj
and ȳj , respectively.



Interpretation of the results after the transformation (example
continues)

I Effect of poison and treatment on survival time even more
significant than before the transformation of the data.

I No significant interaction between poison and treatment:
Effects of poison and treatment are approximately additive
when measured as rates of failure (Y = 1

y )

I Variances more equal after the transformation than before.



Some remarks:

I Transformed data and results based on them may be hard to
interpret (e.g. log(kg) instead of kg)

I Other reasons to transform the data (other than obtaining
constant variance)

I to make data approximately normally distributed (reduce
skewness)

I to obtain a linear relationship
I to obtain an additive relationship (y = a + bx instead of

y = axb, needed in ANOVA)


