EXAMINATION: Tentamensskrivning i Matematisk Statistik (TMS061)
Time: Wednesday 16 January 2008
Jour: Anastassia Baxevani, mobile: 0702972910
Aid: You are allowed to use a scientific calculator and a half page (both sides) of hand written notes

Grade: You need 21 points for 5,16 points for 4 and 11 points for 3 .

Motivate all your answers. Good Luck!

1) Suppose the random variable X has a normal distribution with mean 3 and variance 9. Let $Y=\frac{1}{3} X-1$.
a) What are the mean and variance of Y ? (2 p)
b) What is the probability that Y is at least 1? (1p)
2) a) Suppose that A and B are two events such that: $P(A)=0.6$ and $P(B)=0.8$. Are A and B disjoint? Explain. (1.5p)
b) True or false: If A and B are events, then: $P(A \cup B) \geq P(A)+P(B)$. Justify your answer. (1.5p)
3) State in your own words the Central Limit Theorem. (2p)
4) a) Someone is recording the number of clients that arrive at a shop between 3 and 4 every Saturday afternoon for three months. Which distribution best describes the recordings? (1p)
b) What are the expected value and the variance of a Poisson random variable X for which $P(X=2)=P(X=3)$? (1p)
5) 500 observations from a random variable X have given 35 zeros, 140 ones, 158 twos, 121 threes and 46 fours. Test using a χ^{2} test the hypothesis that the random variable X is binomial with $n=4$ and $p=1 / 2$. (3p)
6) a) The random variable Z is Poisson with mean value 2.4. Compute the probability $P(Z>2)$.(1p)
b) The random variable Y is normally distributed with mean value $\mu=3$ and standard deviation $\sigma=0.8$. Compute $P(Y>2)$.(1p)
7) For the random variable X with probability density function

$$
f(x)=\frac{\lambda^{3} x^{2}}{2} e^{-\lambda x}, \quad x>0
$$

find the maximum likelihood estimator of λ. (3p)
8) Let X be the random variable that measures the content of a bottle of a specific perfume (in ml). A sample of size 16 has been taken from the this perfume and gave $\bar{x}=476.4$ and $s=0.7 \mathrm{ml}$. Assume that X is normally distributed and
a) Compute $P(X \leq 475)$. (1p)
b) Construct a confidence interval for the true mean μ for $\alpha=0.95$. (1p).
9) Let the random variable X have the probability density function $P(X=$ $x)=0.1+0.05 x, \quad x=0,1,2,3,4$.
a) Compute $E(X)$ and $\operatorname{Var}(X)$. (1p)
b) What is the probability $P\left(X_{1}+X_{2}>5\right)$ if X_{1} and X_{2} are independent random variables distributed like X ? (2p)
10) For a engineering study we have recorded the time it takes two different machines A and B to warm up (in min.). The results are:

$$
\begin{array}{lllllll}
A: 6.7 & 7.2 & 5.9 & 6.9 & 7.0 & 6.7 & 5.9
\end{array}
$$

$$
\begin{array}{llllll}
B: 5.4 & 5.8 & 6.3 & 6.2 & 5.6 & 5.5
\end{array}
$$

Assume that the above observations are independent samples from a normal distribution with the same variance. Test the hypothesis that the means of the two distributions are also the same with alternative hypothesis that are different. $\alpha=0.01$ (3p)

