EXAMINATION: Tentamensskrivning i Matematisk Statistik (TMS061)

Time: Tuesday 29 May 2007

Jour: Daniel Ahlberg, mobile: 073 6175831, Eric Jacobsson mobile: 0737353153, Anastassia Baxevani, mobile: 0702972910

Aid: You are allowed to use a scientific calculator and a half page (both sides) of hand written notes

Grade: You need 42 points for 5, 34 points for 4 and 26 points for 3.

Motivate all your answers. Good Luck!

- 1) Determine the constant c so that the following function is a probability mass function: f(x) = cx for x = 1, 2, 3, 4. (4p)
- **2**) Let X_1, X_2, \ldots, X_n be a random sample.

a) What conditions do X_1, X_2, \ldots, X_n have to satisfy? (1p)

b) If X_1, X_2, \ldots, X_n are additionally normally distributed $N(\mu, \sigma^2)$ what can you say about the distribution of \bar{X} ? (2p)

c) What is $E(\bar{X})$, $Var(\bar{X})$? (2p)

d) Is X an unbiased estimator of the true mean? (1p)

 $\mathbf{3})$

-0.19, 0.73, 2.18, -0.14, 0.11, 1.07, 0.04, -0.10, -0.83, 0.29

are 10 computer generated N(0,1) observations. Test the hypothesis $\mu = 1$ with alternative $\mu \neq 1$ when

- a) $\sigma = 1$ is known (3p)
- b) σ is unknown (3p)

at significance level $\alpha = 0.1$.

4) Answer the following questions:

a) Can a null hypothesis be rejected at $\alpha = 0.01$ level when the p-value of the test was 0.007? (1p)

b) In an experiment if P(A) = 0.6 and P(B) = 0.7 is it possible that $P(A \cap B) = 0.2$? (2p)

c) Do X and $2 \cdot X$ have the same variance? (1p)

d) If P(A) = 0.3, P(B) = 0.5 and $P(A \cup B) = 0.65$, are the events A and B independent? (2p)

5) Consider the following frequency table:

Values	0	1	2	3	4	5
Observed frequency	75	140	108	66	9	2

Based on 400 observations is a binomial distribution B(5, 0.3) an appropriate model? Perform a χ^2 test with $\alpha = 0.05$. (5p)

6) The performance of a mettalic device is to be tested. A sample of 14 specimen is taken to give $\bar{x} = 876.5$ and $s_x = 91.4$. After some adjustment has been performed a new sample of 16 specimen was taken to give $\bar{y} = 975.3$ and $s_y = 116.6$.

a) Formulate a suitable model to test the hypothesis that no change has occured with the introduction of the adjustment. (3p)

b) Provide with a confidence interval for the difference of the true means. (3p)

Use $\alpha = 0.05$.

7) The Rayleigh distribution has probability density function

$$f(x) = \frac{x}{\theta} e^{-\frac{x^2}{2\theta}}, \quad x > 0, \quad 0 < \theta < \infty$$

Find the maximum likelihood estimator of θ . (5p)

- 8) Suppose that the random variable X denotes the number of arrivals in a bus station and is distributed as a Poisson random variable with mean 4 arrivals per hour. Compute the following probabilities:
 a) P(X = 0) (1p)
 - b) $P(X \ge 2)$ (1p)
 - c) $P(X \le 4 | X \ge 2)$ (2p)

d) What is the probability that the first bus arrives after one hour? (3p)

9) Assume you are asked 4 questions to which you answer by guessing. For each correct answer you give, you win 1 point and for each wrong answer you loose 1 point. Let X be the maximum between your score and zero. What is the E(X)? (5p)