Multple Regression
Multiple Regression

Frequently an observed response is influenced by several
independent quantitative predictors. The methods by which a

_ . straight line can be fitted for a response influenced by one
TMS_ ol LeCtur_e 8 predictor can be extended to several predictors using least
Multiple Regression squares to fit a model of the form

Y=a+ X1+ B2Xo+ -+ BpXp +e. (1)

Sergei Zuyev

The coefficients are estimated by least squares in a closely
similar way to that used for straight line regression. The basic
assumption is that the error term ¢ is normally distributed with
mean 0 and unknown variance o? that is independent of Xj, ...,
Xp.
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Multple Regression
Diagnostic Plots for Regression

Before we accept the output from a regression analysis, it is
essential that we check whether the assumptions made in the
analysis are reasonable for our data set or are clearly violated.
Three points that should always be addressed are:

@ |Is the mean of the residuals always approximately zero for
every value of X? Consider the three figures below. In the first two cases the
@ Is the variance of the residuals approximately constant for standard linear model would be unsatisfactory.
all values of X?
@ |s the distribution of the residuals approximately Normal?
All three questions will have the answer “yes” if our model is
satisfactory.

To address the first two we can save the residuals and the fitted
values within Matlab, and examine a scatter-plot of the
residuals against the fits with the horizontal zero line drawn in.
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Multiple Regression Multiple Regression

Residuals against Fits Residuals against Fits
S e [ S S S
Fitted Fitted

This plot shows evidence of curvature in the scatter-plot. This plot shows evidence of non-constant variance.
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Multiple Regression Multiple Regression

Residuals against Fits Checking Normality

- To check the normality of the distribution of the residuals the
- T simplest way with Matlab available is construct a Normal

S e X Probability plot (normplot procedure).
£ ' ot If the distribution is Normal, the points in the plot will lie

T A approximately on a straight line.

(‘) 5‘0 160 1%0 260
Fitted
This plot appears to be satisfactory on both these counts. ¢
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Working example

Normal Probability Plot

0.99 = Data are given about 25 patients suffering from cystic fibrosis.
o e The variables measured were:
095 | oy
0.90 PR Subject Reference number of subject
Sex 0 = male, 1 =female
_ o BMP Body mass (weight/heightz) as a percentage
z 050 1 of the age-specific median in normal individuals
g FEV1 Forced expiratory volume in 1 second
o5 | RV Residual volume
. FRC Functional residual capacity
010 | ot TLC Total lung capacity
005 | e PEmax Maximal static expiratory pressure (cm H.O)
ool ‘ ‘ ‘ ‘ ‘ The response variable, PEmayx, is taken as a measure of

s ° e ¥ B malnutrition in these patients. The other variables are
measures of lung function. We shall omit categorical variable
Sex at present.
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Multple Regression
Multiple Regression in Matlab

Here are the data recorded (available also from VLE):

Age Sex Height Weight BMP FEV1 RV FRC TLC PEMax

7 0 109 1341 68 32 258 183 137 95

7 1 112 129 65 19 449 245 134 85

8 0 124 141 64 22 441 268 147 100

8 1 125 16.2 67 41 234 146 124 85 S = regstats (PEMax, [Age Height Weight BMP FEV1 RV FRC TLC])
8 0 127 21.5 93 52 202 131 104 95

9 0 130 17.5 68 44 308 155 118 80 . . .
TR 139 307 89 28 305 179 119 65 calculates the regression equation. S.tstat .beta contains
12 1 150 28.4 69 18 369 198 103 110 . e .

12 0 146 251 67 24 312 194 128 70 the coefficients from which

13 1 155 31.5 68 23 413 225 136 95

12 (1) Eg 22? gg gg ggg 13? 19251 19100 PEMax = 153.039 - 2.115 Age - 0.395 Height + 2.835 Weight
L s - G R i - 1.742 BMP + 1.265 FEV1 + 0.178 RV - 0.248 FRC + 0.208 TLC
16 1 160 35.9 66 31 302 133 101 134

17 1 153 34.8 70 29 204 118 120 134 . . .

170 174 447 70 49 187 104 103 165 Value of S.rsquare indicates the regression model was able to
17 1 176 60.1 92 29 188 129 130 120 . ..

17 0 171 426 69 88 {72 130 103 130 explain over 63% of the variation of PEMax.

19 1 156 37.2 72 21 216 119 81 85

19 0 174 54.6 86 37 184 118 101 85

20 0 178 64.0 86 34 225 148 135 160

238 0 180 73.8 97 57 171 108 98 165

23 0 175 511 7 33 224 131 113 95

23 0 179 715 95 52 225 127 101 195
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S.rsquare  S.tstat.beta  S.tstat.pval  S.fstat

0.6359 153.0385  0.4524 sse: 9.7692e+03 With only 25 cases (as here) it is not a good idea to use so
B e g a0 many predictors. In every case the model that we use for
28349 0.1433 ssr: 1.7063e+04 multiple regression should be as parsimonious as is consistent
-1.7416 01397 f: 3.4933 with extracting as much information as is practicable from the
1.2651 0.1079 pval: 0.0159 .
0.1779 0.3226 predictors.
-0.2483  0.5554 .
0.2084 0.6688 As a rule of thumb, we should hardly ever include more

predictors in the model than the square root of the number of
cases in the data set. We must therefore start by trying to
select the most important predictors for inclusion.

Fix 5% error level. Although the p-value for the model as a
whole is satisfactory (0.0159), none of the predictor variables is
individually significant. This indicates that in fitting this
regression we are over-fitting the model.

&

StGlese RegreSS|0n stepwise ([Age Height Weight BMP FEV1 RV FRC TLC], PEMax)
Coefficients with Error Bars Coeff. t-stat p-val
X1 { 140169 0.5493 0.5884 ‘ Next step:
| Move no terms

X2 —_— 1 0.146756 0.2239 0.8249 | .
Stepwise regression is to sequentially adds predictors to the x3 — | 18671 soass oooos [ [T
model based on their significance until a satisfactory model is X o [ e T

. ies . . . X5 —_— 0.629228 1.1791 0.2509

found. A measure of significance of the predictors in Matlab is %6 . | ooso1sus os106 osass !
the value of t-statistic of its coefficient. x7 - | 00310204 01940 08479

X8 o 0.201156 0.5671 0.5764 ‘ [ Export.. |
The more variables we add to the model, the higher is the data 4 2 o 2 a4 6
fit as expressed by the R? value, but we should use other Intercept = 63,5456 R-square = 0.403507 F = 155587

. . . RMSE = 26.3797 Adj Rsq = 0.377573 p = 0.000645688

measure which would penalise too many explanatory variables »
. Model Histon
in the model. In Matlab look for RMSE - the square root of the 3 T 4
mean variance of residuals which one tries to minimise and R? 4 ol |
adjusted to the number of degrees of freedom which should be g
maximised. 25 : 2’
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PEMax = 126 + 1.54 Weight - 1.47 BMP + 1.11 FEV1

Coefficients with Error Bars Coeff. t-stat p-val
X1 -3.41806 -1.0331 0.3139 ‘ Next step:
X2 —_— —0.724274 -0.9963 0.3310 | iy
. . Next Step
The model suggested by stepwise has just one variable: X3 - R — <
. . - . L . X4 —e— -1.46541 -2.5297 0.0195 T
Welght w_hlch is highly S|gn_|f|cgnt (p-value of 0.0006), but it X5 o e ———
explains just 40.35% variation in PEMax compared to 64% of X6 . 0125715 15120 01462 :
the full model. Therefore we proceed with adding variables. The x7 he OAFES 1AW ORED
. g . . . Export ...
next most significant variable is X4=BMP with p-value 0.0978. e - — OSSTeeRT o ORI | Exeor: )
; ; ; ; Intercept = 126.334 R-square = 0.569994 F = 0.27885
After adding it (click on the corresp. row in the graph) the et o ey fRhu e gt e
procedure suggests also to add FEV1 which results in the odel Histoy
following model: s s
umJ 30+ =
2 5] ° ° i
[ ]
20 | | | |
1 2 3 4
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We may continue to add variables up to the full model:

Coefficients with Error Bars Coeff. t-stat p-val
X1 ~2.11451 -0.4882 0.6320 ‘ Next step:
X2 — —0.394836 —0.4636 0.6492 | MovelXsiout
X3 ———— 283091 15300 01438 | MNext Step |
X4 ——- -1.74164 -1.5541 0.1397 ——
. . . . ien All St
We find now that all predictors contribute significantly to the X5 — 126509 17028 0.1079 : UL
model, and although R2 is a little less (57%) than for the full X0 * 00505 SL0207 0:3228
d I Rz_ d t d . t O 5086 0 4539 d th X7 - —0.248322 -0.6023 0.5554 ‘
mo e ’ a JUS e IS grea er ( : VS " )’ an e X8 ) ) —’- ) 0.208404 0.4358 0.6688 ) Export ...
overall model has a smaller p-value (0.0004) than the original -10 -5 0 5
(0.0159). Intercept = 153.038 RA-square = 0.635923 F = 3.49334
RMSE = 24.7098 Adj R-sg = 0.453884 p = 0.0159002
Model History
35 Py .
w 30 N
2 o
T 251 L4 ° o ° ° ° ® 7
20 L L L L L L L L L
1 2 3 4 5 6 7 8 9
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CUE Lo
Analysis of the chosen model

@ We see from the bottom frame that the best model in terms Diagnostic plots of the residuals (against fitted values and as a
of RMSE is actually Normal Probability Plot) confirm that the model appears to be
PEMax = 63.95 + 1.75 Weight - 1.38 BMP + 1.55 FEV1 + 0.16 satisfactory.

RV
although the lately added RV is not significant (p-value
0.1462). However, adding it brought R-square from 57% to or .
over 61% which is very close to the maximum of 64% a0t .
given by the full model, so let’s go for it! w0l . ° 4
@ It often appears to the investigator what must be the 0l o . ©

important predictors to use. In such cases the use of other
statistical methods for choosing predictors should be

Residuals
o

[e] o
o [e]
regarded as confirmatory, and if confirmation is not given, o °
then it may be an indication of a need to review the theory -20¢ 0 °
underlying the study. 30l °
3 © [e]
‘*@%% % 80 100 120 140 160 180
Fitted

Multple Regression
Values Prediction

Normal Probability Plot
0.99

0.98 +

0.95 - P

0.90 - ++ B d

075 | 22 The model can be used to calculate the fitted value of PEmax
%OSO < z for given values of the predictors. Matlab can also calculate a
g /* prediction interval for the response at each combination of

025 f N : predictor values. This is no longer so straightforward as for

P simple linear prediction, so the formula for hand calculation will

005 o L7 s not be presented. It is however simple to use the quoted

il ‘ ‘ ‘ ‘ : : ‘ standard deviation of each predictor to construct a t-confidence

O T e interval for each predictor’s coefficient in the model.
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Multiple Regression

Cautionary Note

Multiple Regression
Inclusion of categorical variables

If a model is selected from among many possible models, the fit
is quite likely to be better than it should be. This means that if
the same model is later used with another independent but
otherwise identical data set, there may be a much poorer fit.
Careful comparison of the fitted models to the two data is then
needed.

@
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The variable Sex in the data set is a binary categorical variable.
Such a variable can be legitimately included in a multiple
regression model. Assuming that the binary variable has no
significant interaction with other predictors, we can say that the
regression coefficient measures the average shift in the
response between the two groups distinguished by the binary
variable, after all other effects have been allowed for.

By interaction here we mean that the effect of the binary
variable does not act independently of the other predictors (for
example, there would be an interaction if one of the predictors
has an opposite effect on the response for females from what it
has for males).

In this case however it turns out that Sex contributes very little
to the model, and no sensible model selection scheme would
include it.
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