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Multiple Regression

Frequently an observed response is influenced by several
independent quantitative predictors. The methods by which a
straight line can be fitted for a response influenced by one
predictor can be extended to several predictors using least
squares to fit a model of the form

Y = α + β1X1 + β2X2 + · · · + βpXp + ε. (1)

The coefficients are estimated by least squares in a closely
similar way to that used for straight line regression. The basic
assumption is that the error term ε is normally distributed with
mean 0 and unknown variance σ2 that is independent of X1, . . .,
Xp.
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Diagnostic Plots for Regression

Before we accept the output from a regression analysis, it is
essential that we check whether the assumptions made in the
analysis are reasonable for our data set or are clearly violated.
Three points that should always be addressed are:

Is the mean of the residuals always approximately zero for
every value of X?
Is the variance of the residuals approximately constant for
all values of X?
Is the distribution of the residuals approximately Normal?

All three questions will have the answer “yes” if our model is
satisfactory.
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To address the first two we can save the residuals and the fitted
values within Matlab, and examine a scatter-plot of the
residuals against the fits with the horizontal zero line drawn in.

Consider the three figures below. In the first two cases the
standard linear model would be unsatisfactory.
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Residuals against Fits
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This plot shows evidence of curvature in the scatter-plot.
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Residuals against Fits
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This plot shows evidence of non-constant variance.
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Residuals against Fits
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This plot appears to be satisfactory on both these counts.
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Checking Normality

To check the normality of the distribution of the residuals the
simplest way with Matlab available is construct a Normal
Probability plot (normplot procedure).

If the distribution is Normal, the points in the plot will lie
approximately on a straight line.
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Working example

Data are given about 25 patients suffering from cystic fibrosis.
The variables measured were:

Subject Reference number of subject
Sex 0 = male, 1 = female
BMP Body mass (weight/height2) as a percentage

of the age-specific median in normal individuals
FEV1 Forced expiratory volume in 1 second
RV Residual volume
FRC Functional residual capacity
TLC Total lung capacity
PEmax Maximal static expiratory pressure (cm H2O)

The response variable, PEmax, is taken as a measure of
malnutrition in these patients. The other variables are
measures of lung function. We shall omit categorical variable
Sex at present.
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Here are the data recorded (available also from VLE):

Age Sex Height Weight BMP FEV1 RV FRC TLC PEMax
7 0 109 13.1 68 32 258 183 137 95
7 1 112 12.9 65 19 449 245 134 85
8 0 124 14.1 64 22 441 268 147 100
8 1 125 16.2 67 41 234 146 124 85
8 0 127 21.5 93 52 202 131 104 95
9 0 130 17.5 68 44 308 155 118 80

11 1 139 30.7 89 28 305 179 119 65
12 1 150 28.4 69 18 369 198 103 110
12 0 146 25.1 67 24 312 194 128 70
13 1 155 31.5 68 23 413 225 136 95
13 0 156 39.9 89 39 206 142 95 110
14 1 153 42.1 90 26 253 191 121 90
14 0 160 45.6 93 45 174 139 108 100
15 1 158 51.2 93 45 158 124 90 80
16 1 160 35.9 66 31 302 133 101 134
17 1 153 34.8 70 29 204 118 120 134
17 0 174 44.7 70 49 187 104 103 165
17 1 176 60.1 92 29 188 129 130 120
17 0 171 42.6 69 38 172 130 103 130
19 1 156 37.2 72 21 216 119 81 85
19 0 174 54.6 86 37 184 118 101 85
20 0 178 64.0 86 34 225 148 135 160
23 0 180 73.8 97 57 171 108 98 165
23 0 175 51.1 71 33 224 131 113 95
23 0 179 71.5 95 52 225 127 101 195
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Multiple Regression in Matlab

S = regstats(PEMax, [Age Height Weight BMP FEV1 RV FRC TLC])

calculates the regression equation. S.tstat.beta contains
the coefficients from which

PEMax = 153.039 - 2.115 Age - 0.395 Height + 2.835 Weight

- 1.742 BMP + 1.265 FEV1 + 0.178 RV - 0.248 FRC + 0.208 TLC

Value of S.rsquare indicates the regression model was able to
explain over 63% of the variation of PEMax.
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S.rsquare S.tstat.beta S.tstat.pval S.fstat

0.6359 153.0385 0.4524 sse: 9.7692e+03
-2.1145 0.6320 dfe: 16
-0.3948 0.6492 dfr: 8
2.8349 0.1433 ssr: 1.7063e+04

-1.7416 0.1397 f: 3.4933
1.2651 0.1079 pval: 0.0159
0.1779 0.3226

-0.2483 0.5554
0.2084 0.6688

Fix 5% error level. Although the p-value for the model as a
whole is satisfactory (0.0159), none of the predictor variables is
individually significant. This indicates that in fitting this
regression we are over-fitting the model.

Sergei Zuyev TMS-061: Lecture 8 Multiple Regression

Multiple Regression

With only 25 cases (as here) it is not a good idea to use so
many predictors. In every case the model that we use for
multiple regression should be as parsimonious as is consistent
with extracting as much information as is practicable from the
predictors.

As a rule of thumb, we should hardly ever include more
predictors in the model than the square root of the number of
cases in the data set. We must therefore start by trying to
select the most important predictors for inclusion.
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Stepwise Regression

Stepwise regression is to sequentially adds predictors to the
model based on their significance until a satisfactory model is
found. A measure of significance of the predictors in Matlab is
the value of t-statistic of its coefficient.

The more variables we add to the model, the higher is the data
fit as expressed by the R2 value, but we should use other
measure which would penalise too many explanatory variables
in the model. In Matlab look for RMSE - the square root of the
mean variance of residuals which one tries to minimise and R2

adjusted to the number of degrees of freedom which should be
maximised.
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stepwise([Age Height Weight BMP FEV1 RV FRC TLC], PEMax)
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The model suggested by stepwise has just one variable:
Weight which is highly significant (p-value of 0.0006), but it
explains just 40.35% variation in PEMax compared to 64% of
the full model. Therefore we proceed with adding variables. The
next most significant variable is X4=BMP with p-value 0.0978.

After adding it (click on the corresp. row in the graph) the
procedure suggests also to add FEV1 which results in the
following model:
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PEMax = 126 + 1.54 Weight - 1.47 BMP + 1.11 FEV1

     Coeff.   t−stat    p−val

    −3.41806  −1.0331   0.3139

   −0.724274  −0.9963   0.3310

     1.53648   4.2162   0.0004

    −1.46541  −2.5297   0.0195

     1.10863   2.1553   0.0429

    0.125715   1.5120   0.1462

    0.203185   1.2007   0.2439

    0.357968   1.0999   0.2844
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We find now that all predictors contribute significantly to the
model, and although R2 is a little less (57%) than for the full
model, R2-adjusted is greater (0.5086 vs 0.4539), and the
overall model has a smaller p-value (0.0004) than the original
(0.0159).
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We may continue to add variables up to the full model:
     Coeff.   t−stat    p−val

    −2.11451  −0.4882   0.6320

   −0.394836  −0.4636   0.6492

     2.83491   1.5390   0.1433

    −1.74164  −1.5541   0.1397

     1.26509   1.7028   0.1079

    0.177905   1.0207   0.3226

   −0.248322  −0.6023   0.5554

    0.208404   0.4358   0.6688
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We see from the bottom frame that the best model in terms
of RMSE is actually
PEMax = 63.95 + 1.75 Weight - 1.38 BMP + 1.55 FEV1 + 0.16

RV

although the lately added RV is not significant (p-value
0.1462). However, adding it brought R-square from 57% to
over 61% which is very close to the maximum of 64%
given by the full model, so let’s go for it!
It often appears to the investigator what must be the
important predictors to use. In such cases the use of other
statistical methods for choosing predictors should be
regarded as confirmatory, and if confirmation is not given,
then it may be an indication of a need to review the theory
underlying the study.
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Analysis of the chosen model

Diagnostic plots of the residuals (against fitted values and as a
Normal Probability Plot) confirm that the model appears to be
satisfactory.
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Values Prediction

The model can be used to calculate the fitted value of PEmax
for given values of the predictors. Matlab can also calculate a
prediction interval for the response at each combination of
predictor values. This is no longer so straightforward as for
simple linear prediction, so the formula for hand calculation will
not be presented. It is however simple to use the quoted
standard deviation of each predictor to construct a t-confidence
interval for each predictor’s coefficient in the model.
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Cautionary Note

If a model is selected from among many possible models, the fit
is quite likely to be better than it should be. This means that if
the same model is later used with another independent but
otherwise identical data set, there may be a much poorer fit.
Careful comparison of the fitted models to the two data is then
needed.
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Inclusion of categorical variables

The variable Sex in the data set is a binary categorical variable.
Such a variable can be legitimately included in a multiple
regression model. Assuming that the binary variable has no
significant interaction with other predictors, we can say that the
regression coefficient measures the average shift in the
response between the two groups distinguished by the binary
variable, after all other effects have been allowed for.

By interaction here we mean that the effect of the binary
variable does not act independently of the other predictors (for
example, there would be an interaction if one of the predictors
has an opposite effect on the response for females from what it
has for males).

In this case however it turns out that Sex contributes very little
to the model, and no sensible model selection scheme would
include it.
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