Extra Exercises in Basic Probability for Financial Time Series

Andreas Petersson

March 23, 2018

Easier exercises

Ex. 1 - For $t \in \mathbb{Z}$, let $X_{t}=Z_{t}+0.5 Z_{t-1}$ where Z_{t} is an iid sequence with mean 0 and variance σ^{2}.
a) Compute the variance of the sample mean $\left(X_{1}+X_{2}+X_{3}+X_{4}\right) / 4$.
b) Let $Y_{t}=Z_{t}-0.5 Z_{t-1}$. Compute the variance of the sample mean $\left(Y_{1}+Y_{2}+Y_{3}+Y_{4}\right) / 4$ and compare to the previous part of the exercise.

Ex. 2 - For $t \in \mathbb{Z}$, let $X_{t}=X_{0}$ for all $t \in \mathbb{Z}$ where X_{0} is a random variable with finite variance and zero mean. Is the process $\left(X_{t}, t \in \mathbb{Z}\right)$
a) strictly stationary?
b) weakly stationary?

Ex. 3 - Let $\left(X_{t}, t \in \mathbb{Z}\right)$ be a sequence of random variables with (not necessarily identical) finite variance. For $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$, show that

$$
\operatorname{Var}\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

You may assume for simplicity that X_{t} all have zero mean.
Ex. 4 - Let $\left(X_{t}, t \in \mathbb{N}\right)$ be a sequence of zero-mean iid random variables with unit variance. Let $Y_{1}=X_{1}$ and let $Y_{t}=Y_{t-1}+X_{t}$ for $t \in \mathbb{N}$ with $t>1$. Compute $\gamma_{Y}(1,2)$ and $\gamma_{Y}(2,3)$. Is the process $\left(Y_{t}, t \in \mathbb{N}\right)$ stationary?

Ex. 5 - Let $U \sim \mathcal{U}([0,1])$.
a) Find the density function of $S=U^{2}$.
b) Find the density function of $T=-\log (U) / \lambda$, where $\lambda>0$.

Ex. 6 - Let $\left(X_{t}, t \in \mathbb{Z}\right)$ be a stationary process with autocovariance function γ. Use the Cauchy-Schwarz inequality to show that for all $h \in \mathbb{Z},|\gamma(h)| \leq|\gamma(0)|$. Assume for simplicity that $\left(X_{t}, t \in \mathbb{Z}\right)$ has zero mean.

Ex. $7-$ Let $X=U_{1}+U_{2}+\ldots+U_{12}-6$ where, for $i=1, \ldots, 12, U_{i} \sim \mathcal{U}([0,1])$ are mutually independent of one another.
a) Calculate the mean and variance of X.
b) Use the CLT to explain how X can be used to generate approximate standard normal random variables.

Harder exercises

Ex. 8 - Assume that the random variables X and Y are continuous with joint density $f_{X, Y}(x, y)$ and finite means.
a) Show that $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.
b) Show that $X \geq 0 \Longrightarrow \mathbb{E}[X \mid Y] \geq 0$.
c) Assume that X and Y are independent and show that $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$.

Ex. 9 - Let B have the Bernoulli distribution with parameter $p=1 / 2$ and let $X \sim \mathcal{N}(0,1)$ be independent of B. Let $Y=(2 B-1) X$.
a) Compute $\mathbb{E}[Y]$.
b) Compute for $P(Y \leq y)$ for $y \in \mathbb{R}$. What is the distribution of Y ? Hint: Note that $P(Y \leq y)=P(Y \leq y, B=0)+P(Y \leq y, B=1)$.
c) Compute $\operatorname{Cov}(X, Y)$. Are X and Y independent?

Ex. $10-$ Let $X=\exp (Z)$ where $Z \sim \mathcal{N}(0,1)$ (this is called a lognormal random variable).
a) Find the density function of X
b) Use this density to find the mean and variance of X.

Ex. 11 - Let \mathcal{X} be the family of all (real-valued) random variables with finite variance on the probability space (Ω, \mathcal{A}, P). Show that \mathcal{X} is a vector space. Hint: Use the Cauchy-Schwarz inequality $|\mathbb{E}[X Y]|^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$. You may assume that if X and Y are random variables (i.e. measurable), then so are $\alpha X+\beta Y$ for $\alpha, \beta \in \mathbb{R}$

