SERIK SAGITOV, Chalmers Tekniska Högskola, November 23, 2005

5. Quantitative genetics

Types of quantitative traits

metric traits (cont. data): height, weight meristic traits (discrete data): litter size, #bristles threshold traits (categorical data): affected or not

5.1 broad sense heritabitily

5.2 narrow sense heritabitily

5.3 truncation selection

5.4 resemblance between relatives

5.1 Broad sense heritabitily

As a rule a QT is influenced by many genes (polygenes) each gene exerting relatively small effect considerable environmental variation

Ex 1: bristle number

Fig 9.1, p. 399: D.melanogaster

X = number of bristles on 5th abdominal sternite histogram with N(\bar{X}, s^2) curve, $\bar{X} = 18.7, s = 2.1$ phenotypic variance $\sigma_p^2 = \operatorname{Var}(X) \approx (2.1)^2$ Phenotypic value of an individual: P = M + Egenotype value $M = \mu + G \pmod{\mu}$ environmental deviation $E \pmod{0}$ Assumption: independent deviations G and E $P = \mu + G + E$, variance decomposition $\sigma_p^2 = \sigma_g^2 + \sigma_e^2$

Broad sense heritabitily $H^2 = \sigma_g^2 / \sigma_p^2$

Absence of genotype-environment interaction:

Examples of environmental effects:

nutritional and climatic factors, maternal effects cultural environment

Ex 2: estimation of variance components

1) estimate σ_e^2 observing inbred populations 2) find $\sigma_g^2 + \sigma_e^2$ from random-bred populations Thorax length in *D.melanogaster* (in 0.01 mm) inbred populations $\sigma_e^2 = 0.186$ random-bred populations $\sigma_p^2 = 0.366 \ (= \sigma_g^2 + \sigma_e^2)$ $\sigma_g^2 = \sigma_p^2 - \sigma_e^2 = 0.180, \ H^2 = 49.2\%$

Ex 3: LDL-cholesterol level

Human Apo-E locus binds LDL receptor protein

three common alleles e_2 (0.1), e_3 (0.7), e_4 (0.2) LDL-cholesterol level in $\frac{\text{mg LDL-chol}}{\text{dL blood plasma}}$

genot	$e_2 e_2$	e_2e_3	$e_2 e_4$	e_3e_3	e_3e_4	$e_4 e_4$	
freq	0.01	0.14	0.04	0.49	0.28	0.04	sum = 1
M	76	90	115	100	110	106	$\mu = 102$
G	-26	-12	13	-2	8	4	$\sigma_{q}^{2} = 54.2$
A	-16.8	-9.4	-0.7	-2	6.7	15.4	$\sigma_{a}^{2} = 39.2$
D	-9.2	-2.6	13.7	0	1.3	-11.4	$\sigma_{d}^{2} = 15.0$

Broad sense heritability

given $\sigma_p^2 = 554.2$ compute $\sigma_e^2 = 500.0$, $H^2 = 0.098$ High LDL-chol increases risks of coronary heart desease

 e_2e_4 genotype is at greatest risk

 e_4e_4 genotype's children are at greatest risk

Breeding value of a genotype

A =twice the average G across possible offspring

factor 2: only half of genes come from one parent Dominance effect D = G - A, whithin locus interaction

$$P = \mu + A + D + E$$

5.2 Narrow sense heritabitily

One locus model

two alleles A_1 and A_2 with frequencies p and q assuming random mating and HWE

genotype	A_1A_1	A_1A_2	A_2A_2
frequency	p^2	2pq	q^2
M	$\mu^* + a$	$\mu^* + d$	μ^*-a
G	$2qlpha - 2q^2d$	$(q-p)\alpha + 2pqd$	$-2plpha-2p^2d$
A	2qlpha	(q-p)lpha	-2plpha
D	$-2q^2d$	2pqd	$-2p^2d$

Genotypic values M given around $\mu^* = \frac{M_{11}+M_{22}}{2}$ do not depend on the allele frequency pGenotypic deviation $G = M - \mu$ depends on psince population mean $\mu = \mu^* + (p - q)a + 2pqd$ Average effect of gene substitution when a randomly chosen A_1 is replaced by A_2 $\alpha = p(a - d) + q(a + d)$ Breeding value of A_1A_1 genotype $A_{11} = 2(pG_{11} + qG_{12}) = 2q\alpha$ random mate contributes allele A_1 with probability pA and D values are uncorrelated additive variance $\sigma_a^2 = 2pq\alpha^2$, additive gene effects whithin locus interaction component $\sigma_d^2 = (2pqd)^2$ $\sigma_g^2 = \sigma_a^2 + \sigma_d^2$, so that $\sigma_p^2 = \sigma_a^2 + \sigma_d^2 + \sigma_e^2$ Narrow sense heritability $h^2 = \sigma_a^2/\sigma_p^2$

Narrow heritability h^2 is more important than broad H^2 since parents pass their genes not genotypes

Ex 3: LDL-cholesterol level

Narrow sense heritability

 $554.2 = 500.0 + 39.2 + 15.0, h^2 = 0.071$

Ex 4: inheritance of rare diseases

autosomal disease allele A_2 of low frequency $q \approx 0$ assuming $\sigma_e^2 = 0$ Rare recessive disease: d = a $\alpha = 2qa, \sigma_a^2 = 8pq^3a^2, \sigma_d^2 = 4p^2q^2a^2$ Low inheritance $h^2 = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_d^2} = \frac{q}{1+q} \approx 0$ affected offspring come usually from unaffected parents Rare dominant disease: d = -a $\alpha = 2pa, \sigma_a^2 = 8p^3qa^2, \sigma_d^2 = 4p^2q^2a^2$ High inheritance $h^2 = 2\frac{p}{1+p} \approx 1$ affected offspring have one affected parent

Dependence on allele frequency

Phenotypic value distribution is a $(p^2, 2pq, q^2)$ mixture of three distributions for three genotypes

Draw two pdf curves for phenotypic value

1) at $p = \frac{1}{2}$ with negative $\mu = \frac{d}{2}$ 2) at $p = \frac{3}{4}$ with positive $\mu = \frac{a}{2} + \frac{3d}{8}$

Ex 5: coat coloration

x = proportion of black color on the guinea pig coat Normalizing transformation

if $0 \le x \le 1$, then

 $P = \arcsin\sqrt{x}$ often has near normal distribution Fixed environment: P = M and $\sigma_p^2 = \sigma_g^2$

genotype	x	P	$P-\mu^*$
A_1A_1	0.87	68.87	a = 68.87 - 61.60 = 7.27
A_1A_2	0.76	60.67	d = 60.67 - 61.60 = -0.93
A_2A_2	0.66	54.33	-a = 54.33 - 61.60 = -7.27

Variances as functions of p

$$\begin{split} \sigma_a^2 &= -6.92p^4 - 40.25p^3 - 33.22p^2 + 80.39p \\ \sigma_d^2 &= 3.46p^4 - 6.92p^3 + 3.46p^2 \\ \sigma_g^2 &= -3.46p^4 - 47.17p^3 - 29.76p^2 + 80.39p \\ \text{Fig 9.15A-C, p. 433: variance profiles} \end{split}$$

Ex 6: chromosome inversions

D. pseudoobscura: inversions in the 3rd chromosome $A_1 = \text{standard}, A_2 = \text{arrowhead chromosomes}$ overdominance $w_{11} = 0.47, w_{12} = 1.00, w_{22} = 0.62$ Fig 9.15D, p. 433: variance profiles

p	0	0.2	0.418	0.8	1
$\alpha = 0.38 - 0.91p$	0.38	0.198	0	-0.348	-0.53
$\sigma_a^2 = 2pq\alpha^2$	0	0.0125	0	0.0388	0
$\sigma_d^2 = 0.83(pq)^2$	0	0.0212	0.049	0.0212	0
$\sigma_g^2 = \sigma_a^2 + \sigma_d^2$	0	0.0337	0.049	0.06	0
$h^2 = \sigma_a^2 / \sigma_g^2$	_	37.1%	0	64.7%	_

equilibrium frequency $\hat{p} = \frac{1-0.62}{1-0.47+1-0.62} = 0.418$

Fundamental theorem of natural selection: the increase in average fitness at any time is the additive genetic variance in fitness at that time

5.3 Truncation selection

Artificial selection aiming at a certain phenotypic value use a truncation point T for parent selection so that the offspring of selected parents have

phenotypic distribution with a desired bias

To estimate heritability compare phenotypic mean values

 μ = parent mean before selection

 $\mu_s = \text{mean for selected parents}$

 μ' = mean for the offspring of selected parents

R/S = realized heritability

 $S = \mu_s - \mu$ selection differential $R = \mu' - \mu$ response to selection

Prediction equation: $R = Sh^2$ irrespective of T

Ex 7: seed weight

Fig 9.6, p. 409: edible beans of the genus *Phaseolus*

$$P =$$
 weight of seed in mg, truncation point $T = 650$
 $\mu = 403.5, \, \mu_s = 691.7, \, \mu' = 609.1, \, \frac{R}{S} = \frac{205.6}{288.2} = 71.3\%$

verify that $\mu = 19.304$, $\mu_s = 22.727$, $\mu' = 20.149$ realized heritability $h^2 = \frac{\mu' - \mu}{\mu_s - \mu} = \frac{0.845}{3.423} = 0.247$

Repeated truncation selection

Selection program over n generations with

new truncation points changing in certain direction $\mu_0 \xrightarrow{T_0} \mu_{s0} \xrightarrow{h^2} \mu_1 \xrightarrow{T_1} \mu_{s1} \xrightarrow{h^2} \dots \mu_{n-1} \xrightarrow{T_{n-1}} \mu_{s(n-1)} \xrightarrow{h^2} \mu_n$ $S_0 = \mu_{s0} - \mu_0, R_0 = \mu_1 - \mu_0, R_0 = S_0 h^2$ $S_1 = \mu_{s1} - \mu_1, R_1 = \mu_2 - \mu_1, R_1 = S_1 h^2, \dots$ Total response to selection assuming constant h^2 $\mu_n - \mu_0 = R_0 + R_1 + \ldots + R_{n-1} = (S_0 + \ldots + S_{n-1})h^2$ cumulative selection differential $C_n = S_0 + \ldots + S_{n-1}$

Ex 9: body weight in mice

Fig 9.19, p. 445 body weight in mice plotted against C_t linearity supports the assumption of constant h^2 which is usally true for at least ten first generations

Ex 10: oil content in corn

Fig 9.4, p. 407: selection for high oil content in corn seeds over 76 generations, $\mu_0 = 4.8\%$, $\mu_{76} = 18.8\%$

Given that C_t increased by 1.1% per generation estimate $h^2 = \frac{18.8-4.8}{1.1\times76} = 0.168$

5.4 Resemblance between relatives

Another characterisation of h^2 via comparison of

 $P_o =$ male offspring's phenotypic values

 P_f = father's phenotypic values

Regression line

 $P_o = \mu_o + b(P_f - \mu_f)$ with the slope $b = \frac{\text{Cov}(P_o, P_f)}{\text{Var}(P_f)}$ Diallelic model neglecting the environmental component

$$\operatorname{Cov}(P_o, P_f) = \operatorname{E}(P_o \cdot P_f) - \mu^2 = pq\alpha^2 = \frac{1}{2}\sigma_a^2$$
$$b = \frac{\sigma_a^2}{2\sigma_p^2} = \frac{h^2}{2}$$

joint distribution	O = a	O = d	O = -a	total
$P = a, A_1 A_1$	p^3	p^2q	0	p^2
$P = d, A_1 A_2$	p^2q	pq	pq^2	2pq
$P = -a, \ A_2 A_2$	0	pq^2	q^3	q^2
total	p^2	2pq	q^2	1

Offspring and midparent value

$$P_h = \frac{1}{2}(P_m + P_f)$$

Cov $(P_o, P_h) = \frac{1}{2}\sigma_a^2$, Var $(P_h) = \frac{1}{2}\sigma_p^2$, $b = h^2$

Ex 11: pupa weight

Fig 9.2, p.401: pupa weight of flour beetle (son, father) regression line slope b = 0.11, $\hat{h}^2 = 0.22$

Ex 12: shell breadth in mm in 119 sibships of snail Observed frequencies in 119 sibships of snail

shell breadth in mm (midparent value, offspring mean)

22 (16.25, 17.73)	11 (23.75, 22.84)
$31 \ (18.75, \ 19.15)$	4(26.25, 23.75)
48 (21.25, 20.73)	3(28.75, 25.42)

Sample means and sample variances

 $\bar{P}_h = 20.26, \ \bar{P}_o = 20.18, \ s_h^2 = 8.18, \ s_o^2 = 3.31$ Sample covariance $= \frac{1}{118} [22 \cdot (16.25 - 20.26) \cdot (17.73 - 20.18) + \dots]$

 $+ 3 \cdot (28.75 - 20.26) \cdot (25.42 - 20.18)] = 5.18$ Estimated narrow-sense heritability $\hat{h}^2 = \frac{5.18}{8.18} = 0.634$

Observed heritabilities

Fig 9.17-18, p. 438-9: animal and plant h^2 , human H^2 low heritabilities of fitness related traits

General covariance and slope

Table 9.7 p. 436: covariances between close relatives

Coefficient of coancestry for two individuals \searrow

 $F_{XY} = F_I = P(IBD \text{ genes of hypothetical offspring } I)$

В

A

Ex 13: full siblings

Two genes in I are IBD if they both come

1. from the same grandparent I2. from the same chromosome of that grandparent $F_{XY} = 0.5 \cdot 0.5 = 0.25$ $r = 2 \cdot 0.25 = 0.5$ $u = F_{AA}F_{BB} + F_{AB}F_{BA} = 0.5 \cdot 0.5 + 0 \cdot 0 = 0.25$

Covariance and slope

$$\operatorname{Cov}(X,Y) = \frac{\sigma_a^2}{2} + \frac{\sigma_d^2}{4}, \ b = \frac{h^2}{4} + \frac{H^2}{4}$$