Serik Sagitov, Chalmers Tekniska Högskola, February 11, 2005

2. Mutation, migration and selection

2.1 mutation
2.2 migration
2.3 selection
2.4 directional diploid selection
2.5 overdominance
2.6 other types of selection
2.7 mutation-selection balance

Evolutionary forces interfering in HWE
mutation and migration increase genetic variation selection and RGD decrease genetic variation

2.1 Mutation

One locus two alleles model: A wildtype, a mutant forward mutation rate μ per generation: $A \rightarrow a$ backward mutation rate $\nu: a \rightarrow A$
Typically μ is about
$10^{-4}-10^{-6}$ mutations per gene per generation
$p_{t}=$ population frequency of allele A in generation t

Irreversible mutation

If $\nu=0$, then pure loss of alleles A each generation
$p_{t}=p_{t-1}(1-\mu)=p_{0}(1-\mu)^{t} \approx p_{0} e^{-\mu t}$
Fig 5.1, p. 165: $p_{t} \rightarrow 0$ under mutation pressure

$$
\Delta p=-p \mu \text { incremental frequency } \Delta p=p_{t}-p_{t-1}
$$

Half-life of an allele

The number of generations
taking to halve the wildtype allele frequency
$t_{0.5}=\frac{\ln 2}{\mu}=\frac{0.693}{\mu}$ solves equation $p_{t}=0.5 \cdot p_{0}$
If $\mu=10^{-4}$, the half-life is $t_{0.5}=6,930$ generations
if $\mu=10^{-6}$, the half-life is $t_{0.5}=693,000$ generations

Ex 1: mutation rate estimation

Fig 5.3, p. 167: infection resistance gene in E.coli if the cumulative mutation rate μt is small, then $p_{t} \approx p_{0}(1-\mu t)$; if moreover $p_{0} \approx 1$, then $q_{t} \approx q_{0}+\mu t$

Ex 2: transposon deletion

D. mauritania, a site with transposon mariner insertion
spontaneous deletion at rate $\mu=0.01: A \rightarrow a$
If, $D_{0}=1$, find t needed to reach $R_{t}=0.05$:
assuming random mating $q_{t}=\sqrt{R_{t}}=0.224$
linear approximation $q_{t}=0.01 \cdot t$ gives $t=23$
exact formula $q_{t}=1-(0.99)^{t}$ gives $t=26$ generations

Reversible mutation

If $\mu>0$ and $\nu>0$, then
the allele A loss and gain interplay:

$$
\begin{gathered}
p_{t}=p_{t-1}(1-\mu)+q_{t-1} \nu=p_{t-1}(1-\mu-\nu)+\nu \\
\Delta p=-p(\mu+\nu)+\nu
\end{gathered}
$$

Equlibrium frequency $\hat{p}=\frac{\nu}{\mu+\nu}$ solves $\Delta p=0$

$$
p_{t}=\hat{p}+\left(p_{0}-\hat{p}\right)(1-\mu-\nu)^{t}
$$

Fig 5.4, p. 169

$$
\mu=10^{-4}, \nu=10^{-5}, \hat{p}=0.091
$$

Ex 3: intrachromosomal recombination

Salmonella bacterium:
switching between two forms of flagella
due to an intrachromosomal recombination
switching rates are high: $\mu=8.6 \cdot 10^{-4}, \nu=4.7 \cdot 10^{-3}$
Observed results for two Salmonella cultures

t	0	30	700					
p_{t}	0	0.16	0.85	\quad	t	0	388	700
:---:	:---:	:---:	:---:					
p_{t}	1	0.88	0.86					

Expected frequencies
1: $p_{t}=0.845\left(1-(0.994)^{t}\right), p_{30}=0.13, p_{700}=0.83$
2: $p_{t}=0.845+0.155(0.994)^{t}, p_{388}=0.86, p_{700}=0.85$ Expected equlibrium frequency $\hat{p}=0.845$

2.2 Migration

> | Immigration rate m into a subpopulation |
| :--- |
| $=$ the subpopulation proportion quota for |
| new immigrants arriving each generation |

If $m=0.05$, then 5% of the subpopulation individuals have immigrated during the last generation period

One-way migration

Fig 5.14, p. 190: mainland to island migration mainland frequencies are fixed p^{*}, q^{*}
Island frequencies change

$$
\begin{aligned}
p_{t} & =(1-m) p_{t-1}+m p^{*} \\
& =\{\text { non-imm. with } A\}+\{\text { immigrants with } A\} \\
& \Delta p=-p m+m p^{*}
\end{aligned}
$$

Convergence to the mainland frequency

$$
p_{t}=p^{*}+(1-m)^{t}\left(p_{0}-p^{*}\right) \text { so that } p_{t} \rightarrow p^{*}
$$

Ex 4: migration rate estimation

White $($ Georgia $)=$ mainland, blacks $($ Georgia $)=$ island

gene	M	S	$F y^{a}$	$J k^{a}$	$J s^{a}$	β^{s}
blacks (W.Africa)	.474	.172	.000	.693	.117	.090
blacks (Georgia)	.484	.157	.045	.743	.123	.043
whites (Georgia)	.507	.279	.422	.536	.002	.000
\hat{m} per generation	.035	-.013	.011	-.028	-.005	.071

MN data: $t=10, p_{0}=0.474, p_{t}=0.484$

$$
p^{*}=0.507,(1-m)^{10}=\frac{0.507-0.484}{0.507-0.474}, m=0.035
$$

Variation in \hat{m} is mostly due to
uncertainty of the origin of black Americans and variablility of gene frequencies across West Africa Most reliable is Duffy blood groups since allele $F y^{a}$ is absent in W. Africa

Island model of migration

$p_{t}=$ allele A frequency
in a certain subpopulation
$\bar{p}=$ allele A frequency
in the metatpopulation constant over time

The same dynamics as with mainland to island migration $p_{t}=\left(1-m^{\prime}\right) p_{t-1}+m^{\prime} \bar{p}$, where $m^{\prime}=m \cdot \frac{n}{n-1}$
Gene flow eliminates differences among subpopulations $p_{t}=\bar{p}+\left(1-m^{\prime}\right)^{t}\left(p_{0}-\bar{p}\right)$ so that $p_{t} \rightarrow \bar{p}$
Fig 5.16, p. 194
evolution similar to reversible mutation
difference in rates: $m \gg \mu$

2.3 Selection

Haploid selection
Absolute fitnesses W_{A}, W_{a}
$=$ offspring numbers for two bacteria strains A and a
Fig 6.1, p. 213: two potential growth rates
Carrying capacity of the habitat is limited
focus on the allele competition within a population relative fitnesses $w_{A}: w_{a}=W_{A}: W_{a}$

$$
w_{A}=1, w_{a}=1-s, \text { haploid selection coefficient } s
$$

Two potential growth rates $X_{t}=X_{t-1} W_{A}$ number of alleles A in generation t $Y_{t}=Y_{t-1} W_{a}$ number of alleles a in generation t
Allele frequencies

$$
\begin{aligned}
& p_{t}=\frac{X_{t}}{X_{t}+Y_{t}}, q_{t}=\frac{Y_{t}}{X_{t}+Y_{t}}
\end{aligned} \quad \text { odds ratio } \frac{p_{t}}{q_{t}}=\frac{X_{t}}{Y_{t}}
$$

$$
\text { Haploid selection } \Delta p=s p q \text {, if } s \approx 0
$$

Fixation of the favored allele

$$
p_{t} \rightarrow 1 \text { if } s>0 \text { and } p_{t} \rightarrow 0 \text { if } s<0 \text { as } t \rightarrow \infty
$$

Estimate s using linear regression

$$
\begin{aligned}
& \ln \left(\frac{p_{t}}{q_{t}}\right)=\ln \left(\frac{p_{0}}{q_{0}}\right)-t \ln (1-s) \text { or } \\
& \ln \left(\frac{v_{t} t}{q_{t}}\right)=\ln \left(\frac{p_{0}}{q_{0}}\right)+s t, \text { if }
\end{aligned}
$$

Ex 5: selection coefficient estimation

Enzyme 6PGD in E.coli:
involved in metabolism of gluconate not ribose
Two alleles RM43A (p) and $R M 77 C(q)$ code for two allozymes of 6PGD in natural populations

growth medium	p_{0}	p_{35}	$\ln \left(\frac{p_{35}}{q_{35}}\right)-\ln \left(\frac{p_{0}}{q_{0}}\right)$	\hat{s}
gluconate	0.455	0.898	2.36	0.065
ribose (control)	0.594	0.587	-0.029	-0.0008

Allele $R M 43 A$ is better fit to the pure gluconate media control result is not significant

Diploid selection

genotype	$A A$	$A a$	$a a$
relative fitness	$w_{A A}$	$w_{A a}$	$w_{a a}$

Three types of the diploid selection directional selection:

$$
w_{A A}>w_{A a}>w_{a a} \text { or } w_{A A}<w_{A a}<w_{a a}
$$

overdominance: $w_{A a}>w_{A A}$ and $w_{A a}>w_{a a}$ stabilizing selection against homozygotes underdominance: $w_{A a}<w_{A A}$ and $w_{A a}<w_{a a}$ disruptional selection against heterozygotes
Biological components of human fitness survival to maturity, mating success, and fertility
Two stage life history model
adults \rightarrow random mating \rightarrow newborns \rightarrow adults fitness is proportional to P (Survival to maturity)

Genotype frequencies
in adults (D, H, R) and newborns (d, h, r)
From newborns to adults survival to maturity
$D: H: R=d w_{A A}: h w_{A a}: r w_{a a}$
From adults to next generation newborns
random mating $d_{\text {next }}=p^{2}, h_{\text {next }}=2 p q, r_{\text {next }}=q^{2}$
Two relations combined

$$
D_{\mathrm{next}}=p^{2} \frac{w_{A A}}{\bar{w}}, H_{\mathrm{next}}=2 p q \frac{w_{A a}}{\bar{w}}, R_{\mathrm{next}}=q^{2} \frac{w_{a a}}{\bar{w}}
$$

Average fitness $\bar{w}=p^{2} w_{A A}+2 p q w_{A a}+q^{2} w_{a a}$
is close to one if selection is weak

$$
\Delta p=\frac{p q}{\bar{w}}\left(p\left(w_{A A}-w_{A a}\right)+q\left(w_{A a}-w_{a a}\right)\right)
$$

2.4 Directional diploid selection

Directional selection favoring allele A
$w_{A A}=1, w_{A a}=1-h s, w_{a a}=1-s$
diploid selection coefficient $s>0$
Degree of dominance or heterozygous effect h
$h=0$: harmful allele a is recessive in fitness
$h=1$: harmful allele a is dominant in fitness
$0<h<1$: incomplete dominance
$h=0.5$: additive selection

$$
\Delta p=\operatorname{spq}(p h+q(1-h)), \text { if } s \approx 0
$$

Allele fixation dynamics

Directional selection eventually fixes the favored allele
Fig. 6.3, p. 225: three different curves of allele fixation
$h=0, \Delta p=s p q^{2}$

$$
\ln \left(\frac{p_{t}}{q_{t}}\right)+\frac{1}{q_{t}}=\ln \left(\frac{p_{0}}{q_{0}}\right)+\frac{1}{q_{0}}+s t
$$

$h=0.5, \Delta p=\frac{s}{2} p q$
$\ln \left(\frac{p_{t}}{q_{t}}\right)=\ln \left(\frac{p_{0}}{q_{0}}\right)+\frac{s t}{2}$
$h=1, \Delta p=s p^{2} q \quad \ln \left(\frac{p_{t}}{q_{t}}\right)-\frac{1}{p_{t}}=\ln \left(\frac{p_{0}}{q_{0}}\right)-\frac{1}{p_{0}}+s t$
Rare diseases: natural selection eliminates dominant diseases more effectively than recessive ones

Additive selection is similar to haploid selection with haploid selection coefficient $\frac{s}{2}$

Ex 6: industrial melanism

melanic allele A, wildtype allele a
Fig 3.4, p. 86: if no lichens, then A is a favored dominant melanic moth frequency: 1% in $1848,95 \%$ in 1898 1 generation $=1$ year
Selection coefficient estimation

$$
\begin{array}{ll}
p_{0}^{2}+2 p_{0} q_{0} \approx 0.01, p_{0} \approx 0.005 & \ln \left(\frac{p_{0}}{q_{0}}\right)+\frac{1}{q_{0}} \approx-4.29 \\
1-q_{50}^{2} \approx 0.95, p_{50} \approx 0.776 & \ln \left(\frac{p_{50}}{q_{50}}\right)+\frac{1}{q_{50}} \approx 5.72
\end{array}
$$

Solve equation
$5.72=-4.29+50 s$ to find $s=0.20$

Ex 7: pesticide resistance

US in 1940's 7% crops lost to insects
new environment: use of chemical pesticides
US in 198513% crops lost to insects
natural selection: 400 pest species evolved resistance
If p_{0} and p_{t} are small, then
$h=0: \ln \left(p_{t}\right)+1=\ln \left(p_{0}\right)+1+s t$ and $t=\frac{1}{s} \ln \left(\frac{p t}{p_{0}}\right)$
$h=0.5: \ln \left(p_{t}\right)=\ln \left(p_{0}\right)+\frac{s t}{2}$ and $t=\frac{2}{s} \ln \left(\frac{p t}{p_{0}}\right)$

$s=0.5$	$p_{t} / p_{0}=10^{2}$	$p_{t} / p_{0}=10^{4}$	$p_{t} / p_{0}=10^{7}$
$h=0$	$t=9.2$	$t=18.4$	$t=32$
$h=0.5$	$t=18.4$	$t=36.8$	$t=64$

2.5 Overdominance

Overdominance favors heterozygotes

$$
\begin{aligned}
& w_{A a}=1, w_{A A}=1-s_{1}, w_{a a}=1-s_{2} \\
& \Delta p=\frac{p q}{\bar{w}}\left(q s_{2}-p s_{1}\right), \bar{w}=1-p^{2} s_{1}-q^{2} s_{2}
\end{aligned}
$$

$$
\text { Equlibrium frequencies } \hat{p}=\frac{s_{2}}{s_{1}+s_{2}}, \hat{q}=\frac{s_{1}}{s_{1}+s_{2}}
$$

Fig 6.4, p.229: equilibrium frequency \hat{p} maximizes \bar{w}

$$
\begin{aligned}
& \text { if } p=\hat{p} \text {, then } \frac{d \bar{w}}{d p}=2 \hat{q} s_{2}-2 \hat{p} s_{1}=0, \bar{w}_{\max }=1-\frac{s_{1} s_{2}}{s_{1}+s_{2}} \\
& \text { Segregational load } L=1-\bar{w}_{\max }=\frac{s_{1} s_{2}}{s_{1}+s_{2}}
\end{aligned}
$$

Due to gene segregation \bar{w} is always less than theoretical maximal genotype fitness $w_{A a}=1$
Equlibrium genotype frequencies
$D=\frac{1-s_{1}}{\bar{w}} \cdot \hat{p}^{2}, H=\frac{2}{\bar{w}} \cdot \hat{p} \hat{q}, R=\frac{1-s_{2}}{\bar{w}} \cdot \hat{q}^{2}$
excess of heterozygotes $F=1-\frac{1}{\bar{w}}=-\frac{s_{1} s_{2}}{s_{1}+s_{2}-s_{1} s_{2}}$

Ex 8: sickle-cell anemia

Fig 6.5, p. 231: regions in Africa with incidences of malaria and sickle-cell anemia
Gene coding for β chain of hemoglobin

$$
A=\text { normal allele, } S=\text { anemia allele }
$$

Relative fitnesses in Africa regions with malaria $w_{A S}=1, w_{A A}=0.9$ (malaria), $w_{S S}=0.2$ (anemia)
Selection coefficients and equilibrium frequencies

$$
s_{1}=0.1, s_{2}=0.8, \hat{p}=\frac{8}{9}=0.89, \hat{q}=\frac{1}{9}=0.11
$$

$\hat{q}=0.11$ is close to the average q across West Africa considerable variation in q among local populations

Ex 9: multiple alleles selection

West Africa: S is prevalent, it is found a rare allele C

genotype	$A A$	$A S$	$S S$	$A C$	$S C$	$C C$
premalarial environment	1.0	1.0	0.2	1.0	0.7	1.0
malarial environment w	0.9	1.0	0.2	0.9	0.7	1.3

Historical stable equilibrium $A: S=8: 1, \bar{w}=0.911$
genotype ratio for new allele $A C: S C: C C=8: 1: 0$ marginal $w_{C}=0.9 \cdot \frac{8}{9}+0.7 \cdot \frac{1}{9}=0.878$ less than \bar{w} Fig 6.11, p. 252: fixation of C starts from $p_{C}=0.073$

Ex 10: rat control in WWII

Warfarin environment: a blood anticoagulant two alleles $S=$ normal, $R=$ resistant to warfarin
Relative fitnesses in two environments
no warfarin: $w_{S S}=1, w_{S R}=0.77, w_{R R}=0.46$ warfarin: $w_{S S}=0.68, w_{S R}=1, w_{R R}=0.37$
Equlibrium warfarin frequency $\hat{q}=\frac{0.32}{0.32+0.63}=0.34$ after stopping with warfarin how many generations it takes to go from $q_{0}=\hat{q}$ down to $q_{t}=0.01$?
Additive selection case
$1: 0.77: 0.46 \approx 1: 0.75: 0.50$ implying $s=h=0.5$
$\ln \left(\frac{0.99}{0.01}\right)=\ln \left(\frac{0.66}{0.34}\right)+\frac{t}{4}, t=16$ generations

2.6 Other types of selection

Underdominance

Heterozygote inferiority: $w_{A A}>w_{A a}$ and $w_{a a}>w_{A a}$

$$
\begin{aligned}
& w_{A a}=1, w_{A A}=1+s_{1}, w_{a a}=1+s_{2} \\
& \quad \Delta p=\frac{p q}{\bar{w}}\left(p s_{1}-q s_{2}\right), \bar{w}=1+p^{2} s_{1}+q^{2} s_{2}
\end{aligned}
$$

Fig 6.7, p. 235: three equilibria
two locally stable equilibria $\hat{p}=0, \hat{p}=1$
one unstable equilibrium $\hat{p}=\frac{s_{2}}{s_{1}+s_{2}}$

Ex 11: disruptive selection

North American lacewings (insects): green or brown two extreme colors provide camouflage in two different niches, but intermediate color offers no protection This type of selection maintains population diversity it might even cause one species to evolve into two

Frequency-dependent selection

Genotype fitness decreases with its frequency
$w_{A A}=1-c \cdot p^{2}, w_{A a}=1-2 c \cdot p \cdot q, w_{a a}=1-c \cdot q^{2}$ c is a positive constant of proportionality

$$
\Delta p=\frac{c}{\bar{w}} p q(q-p)\left(p^{2}-p q+q^{2}\right)
$$

Stable equilibrium $\hat{p}=\hat{q}=0.5$
despite heterozygote inferiority in the equilibrium state $w_{A A}=w_{a a}=1-\frac{c}{4}, w_{A a}=1-\frac{c}{2}$

2.7 Mutation-selection balance

Directional selection favoring allele A increases $p \quad \Delta p=\operatorname{spq}[p h+q(1-h)]$
Irreversible harmful recurrent mutation of rate μ decreases $p \quad \Delta p=-p \mu$
Combined effect $\quad \Delta p=s p q[p h+q(1-h)]-p \mu$

$$
\text { Equilibrium equation: } \quad p q h+q^{2}(1-h)=\frac{\mu}{s}
$$

Equlibrium frequencies of the harmful allele

$$
\hat{q}=\sqrt{\frac{\mu}{s}}, \text { if } h=0 \quad \hat{q}=\frac{\mu}{h s}, \text { if } 0<h \leq 1, p \approx 1
$$

Typically $\mu=10^{-5}$ to 10^{-6} while $s=10^{-1}$ to 10^{-2}
$h=1$ (dominant disease): $\hat{q}=10^{-3}$ to 10^{-5}
$h=0$ (recessive disease): $\hat{q}=3 \cdot 10^{-2}$ to $3 \cdot 10^{-3}$
Fig 6.8, p. 238: let $\mu=5 \cdot 10^{-6}$ and $s=1$
$\hat{q}=\sqrt{\mu}=0.0022$ if $h=0$ compare with
$\hat{q}=\frac{\mu}{h}=0.0002$ if $h=0.025$

Ex 12: Huntington disease

Severe inherited dominant disorder: degeneration of the neuromuscular system after age 35
Michigan sample frequency $\hat{q}=5 \cdot 10^{-5}$
$w_{A A}=1, w_{A a}=0.81$ due to late onset, $w_{a a}=0$
Estimation of mutation rates in humans $\hat{\mu}=\hat{q} h s \approx 10^{-5}$ mutations per gene per generation

Ex 13: cystic fibrosis

Two possible explanations of the polymorphism $\hat{q}=0.02$
mutation-selection balance $w_{A A}=w_{A a}=1, w_{a a}=0$
overdominance $w_{A A}<w_{A a}=1, w_{a a}=0$
Mutation-selection balance $s=1, h=0$
$\mu=\hat{q}^{2}=0.0004$ unrealistically high mutation rate
Overdominance $\hat{q}=\frac{s_{1}}{1+s_{1}}, s_{1}=0.02$
heterozygotes are resistant against typhoid fever 2% advantage in heterozygous fitness

Mutation load

Mutation load $=$ reduction in average fitness caused by recurrent harmful mutation

$$
\text { Mutation load } L=1-\bar{w} \text { for } 0 \leq h \leq 1, s>0
$$

Haldane-Muller principle

1. if $h=0$, then $L=\mu$ is independent of s
2. if $h>0$, then $L=2 \mu$ is independent of s and h

The effect of deleterious mutation on the mean population fitness depends only on mutation rate and not on severity of mutations
Milder mutations are present at higher frequency whereas more severe mutations have lower frequency

Segregation distortion

Non-Mendelian segregation
heterozygotes $A a$ produce a skewed ratio $k:(1-k)$
of A-gametes and a-gametes
Segregation distortion without selection
leads to fixation of allele A if $k>0.5$
Assuming random mating

$$
\begin{aligned}
& p_{t}=p_{t-1}^{2}+k 2 p_{t-1} q_{t-1}, q_{t}=q_{t-1}^{2}+(1-k) 2 p_{t-1} q_{t-1} \\
& \Delta p=p q(2 k-1) \text { like add. selection with } \frac{s}{2}=2 k-1
\end{aligned}
$$

Ex 14: segregation distortion chromosome

SD chromosome in D.melanogaster
$A=$ SD chromosome, $a=$ wildtype chromosome segregation ratio $=0.75: 0.25$
Selection against SD chromosome
$A A$ is lethal, $w_{A A}=0, w_{A a}=w_{a a}=1$
Combined effect of segregation distortion and selection

$$
\begin{aligned}
p_{t} & =1.5 p_{t-1} q_{t-1} \frac{1}{\bar{w}} \\
q_{t} & =q_{t-1}^{2} \frac{1}{\bar{w}}+0.5 p_{t-1} q_{t-1} \frac{1}{\bar{w}} \\
\bar{w} & =2 p q+q^{2}=q(1+p)
\end{aligned}
$$

Incremental and equilibrium frequencies

$$
\Delta p=\frac{p(0.5-p)}{1+p} \text { and } \hat{p}=0.5
$$

