Serik Sagitov, Chalmers Tekniska Högskola, February 23, 2005

3. Random genetic drift

3.1 genetic sampling
3.2 Wright-Fisher model
3.3 effective population size
3.4 diffusion approximation
3.5 RGD-mutation equilibrium
3.6 RGD-migration equilibrium

3.1 Genetic sampling

random inheritance of alleles in a finite population
RGD $=$ random change in allele frequencies due to genetic sampling

Ex 1: D. melanogaster experiment

Fig 7.4, p. 273: $K=107$ experimental populations
population size $N=16$
8 males +8 females chosen at random
One gene with two alleles of equal fitness
brown eye allele $b w=a$
yellow eye allele $b w^{75}=A$

$$
X_{t}=\text { total number of alleles } A \text { in generation } t
$$

107 observed scenarios for 20 generations
20 histograms for $X_{t}, t=0,1, \ldots, 19$

Properties of RGD

has no direction, accumulates with time causes the loss of gen. variability within a population causes an increase of gen. var. between populations average allele freq. across populations remains constant

3.2 Wright-Fisher model

WFM is a simple population model on the allele level assuming random mating and finite population size
Constant generation size
N diploids at each generation
$2 N$ haploids (gene copies)
Backward description of the reproduction law every gene copy picks its parent at random from $2 N$ gene copies in the previous generation
Offspring number distribution $\nu \sim \operatorname{Bin}\left(2 N, \frac{1}{2 N}\right)$ Pois(1) approximation: $\mathrm{E}(\nu)=1, \operatorname{Var}(\nu)=1$

k	0	1	2	3	4	5
$\mathrm{P}(\nu=k)$	0.37	0.37	0.18	0.06	0.02	0.00

Ex 2: RGD simulation

WFM of size 6
random numbers produced by students
six numbers between 1 and 6 per generation
$X_{0}=3$

Allele frequency dynamics

$$
p_{t}=\frac{1}{2 N} X_{t} \text { frequency of allele } A \text { in generation } t
$$

Fixed initial frequency p_{0}
independent trajectories of p_{t} for different populations Conditional distribution

$$
\begin{aligned}
& X_{t} \sim \operatorname{Bin}\left(2 N, p_{t-1}\right) \\
& \mathrm{E}\left(p_{t} \mid p_{t-1}\right)=p_{t-1}, \operatorname{Var}\left(p_{t} \mid p_{t-1}\right)=\frac{p_{t-1} q_{t-1}}{2 N} \\
& \operatorname{Var}(\Delta p)=\frac{p q}{2 N}
\end{aligned}
$$

Average p_{t} across populations remains constant

$$
\mathrm{E}\left(p_{t}\right)=\mathrm{E}\left(p_{t-1}\right)=\ldots=\mathrm{E}\left(p_{1}\right)=p_{0}
$$

Variation in p_{t} among populations increases with t

$$
\sigma_{t}^{2}=\frac{p_{0} q_{0}}{2 N}+\left(1-\frac{1}{2 N}\right) \sigma_{t-1}^{2}
$$

Fixation index of RGD

Metapopulation of isolated populations under RGD
fixation index $F_{t}=\frac{\sigma_{t}^{2}}{\bar{p}_{t} \bar{q}_{t}} \approx \frac{\sigma_{t}^{2}}{p_{0} q_{0}}=\frac{1}{2 N}+\left(1-\frac{1}{2 N}\right) F_{t-1}$

$$
1-F_{t}=\left(1-\frac{1}{2 N}\right)\left(1-F_{t-1}\right)
$$

Average heterozigosity across populations (unlinked loci)

$$
\bar{H}_{t}=2 \bar{p}_{t} \bar{q}_{t}\left(1-F_{t}\right) \approx 2 p_{0} q_{0}\left(1-F_{t}\right)
$$

In terms of the pedigree inbreeding coefficient
$F_{t}=$ probab. for two random gene copies at gener. t to descend from the same gene copy at gener. 0

The rate of RGD in the WFM
$1-F_{t}=\left(1-\frac{1}{2 N}\right)^{t}$
average heterozygosity $\bar{H}_{t} \approx 2 p_{0} q_{0}\left(1-\frac{1}{2 N}\right)^{t}$

3.3 Effective population size

for a randomly mating population different from WFM
EPS N_{e} is the size of WFM with the same RGD rate

$$
1-F_{t}=\left(1-\frac{1}{2 N_{e}}\right)^{t}
$$

Actual size $N \neq N_{e}$ (usually $N_{e}<N$)
due to various deviations from WFM assumptions

Ex 1: D. melanogaster experiment

Fig 7.12, p. 288: $N=16$ and $N_{e}=9$
average heterozygosity $\bar{H}_{t} \approx 0.5\left(1-\frac{1}{18}\right)^{t}$

$$
\text { Exchangeable reproduction law } N_{e}=\frac{N}{\operatorname{Var}(\nu)}
$$

Variable population size

Assuming large historical population sizes $N_{1}, N_{2}, \ldots, N_{t}$

$$
1-F_{t}=\left(1-\frac{1}{2 N_{1}}\right)\left(1-\frac{1}{2 N_{2}}\right) \ldots\left(1-\frac{1}{2 N_{t}}\right)
$$

$$
\approx 1-\frac{1}{2 N_{1}}-\frac{1}{2 N_{2}}-\ldots-\frac{1}{2 N_{t}}
$$

$$
1-F_{t}=\left(1-\frac{1}{2 N_{e}}\right)^{t} \approx 1-\frac{t}{2 N_{e}}
$$

Harmonic mean formula $\frac{1}{N_{e}}=\frac{1}{t}\left(\frac{1}{N_{1}}+\frac{1}{N_{2}}+\ldots+\frac{1}{N_{t}}\right)$

Bottleneck effect

$$
\begin{aligned}
& N_{1}=\ldots=N_{5}=1000 \\
& N_{6}=N_{7}=100, N_{8}=\ldots=N_{12}=1000
\end{aligned}
$$

Compare $N_{e}=400, \bar{N}=850$, and current $N=1000$
Ex 3: northern elephant seals
hunted down to $N=20$ in 1890's
now $N=30,000$ and no genetic variation in 24 genes Southern elephant seals
to the contrary have wide genetic variation

Founder effect

Small number of founders and exponential growth:
$N_{1}=10, N_{2}=20, N_{3}=40, N_{4}=80, \ldots, N_{10}=5120$
compare $N_{e}=50, \bar{N}=1023$, and current $N=5120$

Ex 4: Amish in Pennsylvania

$A=$ recessive allele causing Dwarfism
in Switzerland $p_{A A}=1 / 1000$
among 12,000 Amish in Pennsylvania $p_{A A}=1 / 14$ descendants of 30 people migrated from Switz in 1720

Ex 5: 50/500 conservation rule

begin a conservation program with at least $N_{e}=50$ and release the animals when $N_{e}=500$

Example: $N_{t}=5120,2560, \ldots, 40,20,10$
$N_{e}=50$, the species might be saved even though the actual population size is only $N=10$

Unequal sex ratio

Unequal number of breeding males N_{m} and females N_{f} two random gene copies descend from the same parental gene with probability $\frac{1}{2 N_{e}}=\frac{1}{4} \cdot \frac{1}{2 N_{m}}+\frac{1}{4} \cdot \frac{1}{2 N_{f}}$

$$
N_{e}=\frac{4 N_{m} N_{f}}{N_{m}+N_{f}}
$$

Ex 6: buffalo population

5 bulls mating 100 cows

$$
N_{e}=\frac{4 \cdot 5 \cdot 100}{5+100}=19.05
$$

Uniform population dispersion

Density parameter $\delta=$ the number
of breeding individuals per hectare $\left(=10^{4} \mathrm{~m}^{2}\right)$
Mobility parameter σ measured in 100 m
offspring birthplaces are IID with $\mathrm{N}\left(\mu_{1}, \mu_{2}, \sigma^{2}, \sigma^{2}, 0\right)$
parent's birthplace (μ_{1}, μ_{2}) measured in 100 m

$$
\text { Neighborhood size: } N_{e}=4 \pi \delta \sigma^{2}
$$

Non-random mating: $1-F_{t}=\left(1-\frac{1}{2 N_{e}}\right)^{t}$, where
$F_{t}=$ probab. for two gene copies in an individual at generation t to descend from the same ancestral gene copy at generation 0

Ex 7: deer mouse, Michigan

$\delta=6$ breeding individuals per ha, $\sigma=114 \mathrm{~m}$
neighborhood size $N_{e}=4 \cdot 3.14 \cdot 6 \cdot(1.14)^{2}=98$
low density and low mobility

EPS of mt DNA

Nuclear gene EPS $=N_{e}$
X -linked gene EPS $=\frac{3}{4} N_{e}$
Y-linked gene EPS $=\mathrm{mt}$ DNA $\mathrm{EPS}=\frac{1}{4} N_{e}$

3.4 Diffusion approximation

Diffusion approximation $\xi_{t}=p_{[2 \mathrm{Nt}]}$
allele frequency with time running faster by factor $2 N$
in WFM with add. selection and reversible mutation
1 generation corresponds to $\Delta t=\frac{1}{2 N}$ of diffusion time
Conditional expectation and variance

$$
\begin{array}{lc}
\mathrm{E}\left(\Delta \xi_{t} \mid \xi_{t}=p\right)=M(p) \Delta t & M(p)=-a p+b q+c p q \\
\operatorname{Var}\left(\Delta \xi_{t} \mid \xi_{t}=p\right)=V(p) \Delta t & V(p)=p q
\end{array}
$$

$$
\text { Infinitesimal mutation rates } a=2 N \mu, b=2 N \nu
$$ and selection coefficient $c=2 N s$

Backward and Forward Kolmogorov Equations for conditional pdf $\phi(p, x, t)$ of $\xi_{t}=x$ given $\xi_{0}=p$

BKE: first generation change $\phi_{t}^{\prime}=M(p) \phi_{p}^{\prime}+\frac{1}{2} V(p) \phi_{p}^{\prime \prime}$ FKE: last gen. change $\phi_{t}^{\prime}=-[M(x) \phi]_{x}^{\prime}+\frac{1}{2}[V(x) \phi]_{x}^{\prime \prime}$

Allele fixation

$T=$ time to fixation of allele A at frequency p $u(p)=\mathrm{P}\left(T<\infty \mid \xi_{0}=p\right)$ probability of fixation $T=\infty$ means that allele A is never fixed i.e. lost $u(p)$ satisfies stationary BKE with $u(0)=0, u(1)=1$

Stationary BKE $M(p) u^{\prime}+\frac{1}{2} V(p) u^{\prime \prime}=0$
WFM with selection and without mutation solution of the stationary BKE $\quad u(p)=\frac{1-e^{-2 c p}}{1-e^{-2 c}}$ in particular, if no selection $\quad u(p)=p$

Fixation of a new mutation

New mutation $p=\frac{1}{2 N}$ fixation prob. $u\left(\frac{1}{2 N}\right)=\frac{1-e^{-2 s}}{1-e^{-4 s N}}$

$$
u\left(\frac{1}{2 N}\right) \approx \frac{2 s}{1-e^{-4 s N}} \text { if }|s| \ll 1
$$

Neutral selection: if $|s| \ll \frac{1}{4 N}$, then $u\left(\frac{1}{2 N}\right)=\frac{1}{2 N}$ mean time to fixation $\mathrm{E}(T \mid T<\infty) \approx 4 N$ average time to loss $\approx 2 \ln (2 N)$
Positive selection
if $\frac{1}{4 N} \ll s \ll 1$, then $u\left(\frac{1}{2 N}\right) \approx 2 s$
mean time to fixation $\mathrm{E}(T \mid T<\infty) \approx \frac{2}{s} \ln 2 N$
Negative selection

$$
\text { if } \frac{1}{4 N} \ll-s \ll 1 \text {, then } u\left(\frac{1}{2 N}\right) \approx-2 s \cdot e^{4 s N}
$$

Ex 8: numerical example

population size $N=10^{6}$
If $s=0.05$, then
$u\left(\frac{1}{2 N}\right)=0.1$ or 90% probability of loss
mean time to fixation 580 generations
If $s=-0.01$, then
$u\left(\frac{1}{2 N}\right)=0.02 \cdot e^{-40000}=0$ fixation is impossible
If neutral mutation, then
$u\left(\frac{1}{2 N}\right)=0.5 \cdot 10^{-6}$
mean time to fixation ≈ 4000000 generations average time to loss ≈ 29 generations

Stable distribution of the allele frequency

Under unchanged circumstances distribution $\phi(p, x, t)$ becomes a stationary distribution: $\phi(p, x, \infty) \equiv f(x)$ independent of t and p, so that initial state is forgotten Stationary FKE: $[M(x) f(x)]^{\prime}=\frac{1}{2}[V(x) f(x)]^{\prime \prime}$ WFM with reversible mutation, no selection: $\operatorname{Beta}(2 b, 2 a)$ pdf $f(x)=\frac{\Gamma(2 a) \Gamma(2 b)}{\Gamma(2 a+2 b)} x^{2 b-1}(1-x)^{2 a-1}$

Mean value and variance of $\operatorname{Beta}(2 b, 2 a)$ distribution mean $\hat{p}=\frac{2 b}{2 a+2 b}=\frac{\nu}{\nu+\mu}$ equilibrium frequency variance $=\frac{a b}{(a+b)^{2}(2 a+2 b+1)}$ strength of RGD

Beta($2 b, 2 a$) curve shapes
U curve, $2 a<1$ and $2 b<1$, weak SF strong RGD bell curve, $2 a>1$ and $2 b>1$, strong SF weak RGD
L curve, $2 a<1$ and $2 b>1$, strong SF against fixation

3.5 RGD-mutation equilibrium

Population heterozygosity in a dynamic equlibrium non-reversible mutation generates new alleles RGD eliminates alleles due to gentic sampling
IBD in the presence of mutation $=$ no mutation since MRCA (most recent common ancestor)
Neutral mutation rate μ per gene per generation
$F_{t}=(1-\mu)^{2}\left(\frac{1}{2 N_{e}}+\left(1-\frac{1}{2 N_{e}}\right) F_{t-1}\right)$
equlibrium solution $\hat{F}=\frac{1}{1+\theta}$, where $\theta=4 N_{e} \mu$
Infinite-alleles mutation model (IAM)
each mutation produces a novel allele
Identity by descent $=$ identity by state $=$ homozygosity

$$
\text { average heterozygosity } \hat{H}=1-\hat{F}=\frac{\theta}{1+\theta}
$$

Effective number of alleles

Number k_{e} of hypothetical alleles with equal frequencies resulting in the same as observed $H=1-p_{1}^{2}+\ldots+p_{k}^{2}$ $1-H=\left(\frac{1}{k_{e}}\right)^{2}+\ldots+\left(\frac{1}{k_{e}}\right)^{2}=\frac{1}{k_{e}}$
neutral mutation equilibrium $k_{e}=\theta+1$ under IAM

Ex 9: mutation rate estimation

Fig 2.9, p. 55 allozyme alleles in Drosophila
$N_{e}=10^{6}, \hat{H}=0.14, \hat{\theta}=\frac{\hat{H}}{1-\hat{H}}=0.163$
$k_{e}=1.163, \hat{\mu}=4 \cdot 10^{-8}$
IAM underestimates μ if based on electrophoresis H
usually $\mu=10^{-4}-10^{-6}$ mut. per gene per generation

Ewens sampling formula

gives a rough estimate of θ based on the sample size and the observed number of alleles
Average number of IAM alleles in a sample of size n

$$
\mathrm{E}(k)=1+\frac{\theta}{\theta+1}+\frac{\theta}{\theta+2}+\ldots+\frac{\theta}{\theta+n-1}
$$

diminishing return in new alleles when n increases $\mathrm{E}(k) \approx 1$ for small θ and $\mathrm{E}(k) \approx n$ for large θ

3.6 RGD-migration equilibrium

RGD reduces H due to random allele fixation migration increases H due to gene inflow
Assumptions
subpopulation EPS $=N_{e}$ immigration rate m, no mutation

$$
\text { Stable equilibrium: } \hat{F}=\frac{1}{1+4 N m}, \hat{H}=\frac{4 N m}{1+4 N m}
$$

Similar to RGD-mutation equilibrium only $m \gg \mu$

	$N m$	\hat{F}	\hat{H}
complete genetic isolation	0	1	0
one migrant every fourth generation	0.25	0.50	0.50
one migrant every second generation	0.5	0.33	0.67
one migrant every generation	1	0.20	0.80
two migrants every generation	2	0.11	0.89

Ex 10: estimation of $N_{e} m$

Fig 5.18, p. 197: $\hat{F}_{S T}$ for 61 genes (61 scenarios) in natural populations of D.melanogaster average $\hat{F}_{S T}=0.16$, leading to $N m=1.3$

If both mutation and migration occur $\hat{F}=\frac{1}{1+4 N(\mu+m)}$

Ex 11: melanic forms in moth

Two moth species in the Liverpool-Manchester area Fig 5.19, p. 199: frequency of melanic forms A: high migration rate, B: low mobility

