Answers to selected exercises

“A First Course in Stochastic Models”, Henk C. Tijms

11 PN =1 =Py, <2)=1—-e2

1.2 (a) Let W; = waiting time if j passengers already arrived, j = 0,1, ...,6. Then
P(W;<x)=1 —Zi-‘;ol%’f)ie‘“, k=6-j,j=01,..,6

1 ifnmod7=1

(b) P(no wait) = {0 if nmod 7 # 1

(c) Long-run fraction for j = 0,1, ...,6 is 1/7

(d) Let W = waiting time. Then

_l —Ax
P(W>x)—7 e

1.3 (a) Let W; = waiting time if j passengers already arrived, j = 0,1, ...,6.

Let N(x) be a Poi(A)-process where a passenger arrives every second “event”

2(5-j)+1
(Ax)*k
P(W;>x)=P(N(x) <2(5-/))+1) = o—Mx

(b) Same as 1.2b.

(c) Same as 1.2c.

1.4 P(takebus1) = f010 P(take bus 1|arrive at x)P(arrive at x)dx =

_ floe-l—lo“"‘x)idx —1-1~063
0 10 e
Why > 0.5? Since E[X;] = 5 and E[X5] = 10.
1.5 Let X =number of cars passed before you can cross
PX=n)=(1- e"lc)ne_’lc
Thus, the geometric distribution with p = e~c,

1.6 4, = time since the last arrival before or at t

(a)



P(Sth)=ZP(t—xSSnSt,t<Sn+1)=1—e"1"

n=1

(b)
PG =ty <u)=eM(1—e ™) =P8 =t)P(y; <u)
andfor0 <v <t
PG, <vy,<w=(1-e)(1—e™)=P(5 <v)P(y: <u)

1.7 Let T = travel time of a given fast car.

E[T] = E[T|slow car leaves before caught up]P(leaves before)
+ E[T|fast car catches up]P(catches up) =

L L
_ ie—lz(é—é) n sz S1 (i _ 'Ll) (Aze—lzu)du
S1 0 S2
_L_ i(l _ e—h(é—é))
Sy Ay

1.8 Conditionon X; + -+ X,, and X4, + --- X, 4x+1 and compute

PXy+ Xy <t <Xy Xnt1, X+ Xpypyr > t+5)
k .
)" As)/
= e_lt%z e—M% = P(N(t) =n)P(N(s) < k)
L4

1.9 (a) The merged process N(t) = N;(t) + N,(t) is also Poisson, Poi(4; + 1,) and

n
P(N(1) =n) = e—(h+b)M

n!
(b) Let X = service time of the next request.
f (X) = /1—1 e HiX 4 2 e ~H2X
X A+ A0 A+ At

1.10Let N(t) = number of claims.

[oe]

P(N(1) =k) = f P(N(1) =k|A=x)fi(x)dx =
0

00 xk ﬁaxa—l
— -x -Bx
-[o e KT @ e Prdx

I(a+k) “ 1

— -x(B+1) pak+a—-1
Tk+ DM@ ), T@+h)® X dx

[Let6 =k+aandy =+ 1]



Fa+k) B (® 1
- - . ,Yx.6-1.8
Ttk + DI (@) 72 fo ety dx

r'(6)
_ T(a+k) ( B )“( 1 )
T Tkk+DI(@)\B+1/) \p+1
2.1 If N(t) = the number of lamps replaced at time t, then the expected number of street lamps
used in [0,T]is M(T) + 1 where

o) 2n—1 (AT)k
M(T) = E[N(T)] = Z (1 — z e~ AT o )

n=1 k=0

k

2.2 (a) Let N(t) = number of weeks up to waste amount t. Then the expected number of weeks
needed to exceed L is M(L) + 1 where

M(L) = P(S, <L) = “uya-1q
(L) Z (Sn <L) zl“(na)fo e u u
n=1 n=1

(b)

AL la+1
A4(L) = 7;'+'5 -

1

2.3 Mean and standard deviation are given by 7.78 and 4.78 minutes, respectively.
2.4 Use the inequalities

PXi+ X, <t) SPX;+ -+ X SOPXyy1 + X, <)
SPXy+ -+ X, <tOOPXpy1 <t)-PX, <t)

to conclude that F,(t) < Fa(t)(F(t))n_k forn > kand t = 0. (b) follows immediately from
this.

2.5 (a) If N, (t) denotes a Poi(A)-process, then
P(N(t) > k) =P(N(@) 2k +1) =P(Ny(t) = (k+ 1)
(b) The excess variable is y; = §y()+1 — 1. Let 8y ) = 0 (using memoryless property).
P(N(t) < k) = P(Ny(t) < kr)
Thus y; is Erlang if and only if kr — j Poi(A)-arrivals occurred in (0, t), giving the formula.

2.6 (a) The long-run fraction of time the process is in state i equals (p;/4;)(p1 /A1 + p2/A,). This s
also the limit of lim;_,,, P(X(t) = i).



3.1 Let X;, = system state at the beginning of nth day. State space

0 = both parts failed
1 = one part is working
2 = both parts are working

Transition matrix
0 0 1
0.50 0.50 0
0.25 0.25 0.50
3.2 Let X,, = system state at day n with state space

(0,0) = both machines work

(0,1) = one works, one is in day one of repair

(0,2) = one works, one is in day two of repair

(1,2) = oneis in day one of repair, one is in day two of repair

Transition matrix
9/10 1/10 0 0
0 0 9/10 1/10
9/10 1/10 0 0
0 0 1 0
3.3 (a) Let X,, = number of containers at day n. State space I = {0,1,2, ... }. Let
a = P(container still present in eve|present in morning) = P(residency > 1 day) = e ™

i+ 1\ . o
Transition probabilities p;; = (l -; )af (1—-a)*J forj =0,1,...,i + 1 and 0 otherwise.

(b) Let a container be type-k if its residency time is Exp(u), k = 1,2.

Let X, = number of type-k containers day n

{X,, = (X1, Xn2)} is @ Markov chain with state space I = {(iy,i,):i1,i, = 0,1,2,...}
Let a, = P(type-k present at eve|present in morning) = e ¥

Then the transition probabilities are

i+ 1\ e i+ 1Y e
Paninun =P (1] )l =it + @ =p) (2 ) ek - aperie

forj; =0,1,..,i;+1andj, =0,1,...,i, + 1, and O otherwise.
3.4 Define a Markov chain with an absorbing state.

0 = no game played yet
1 = one team won current game but not previous
2 = one team won last two but not the one before that



3 =one team won last three games

Let 3 be an absorbing state. Transition matrix

01 00
0 1/2 1/2 0
0 1/2 0 1,2

00 01

pP=

Then P(exactly m games) = p(()g’l) - p(();n_l) where p(()gl) = P(X,, = 3|X, = 0).
3.5 (a) Let p = probability that team A wins. Let the states be fori = 1,2,3

(0,0) = no game played yet
(i,A) = A has won the last i games but not the one before that
(i, B) = B has won the last i games but not the one before that

Let (3,A4) and (3, B) be absorbing states. We get a 7 X 7 transition matrix with

P(0,0),(1,4) =P P, =1—p
P(ia)(i+1,4) =P DP@iB)i+1,8) =1—D
PG48 = 1—P PB4 =P
34,364 =1 P3B),G38) =1

All other transition probabilities are 0.

P(more than m games needed) = 1 — (p((g’lg)’(“) - p((gg),(&m)

Let f(i,j) = P(A ultimate winner|current state is (i,j)), i = 0,1,2,3,j = A, B.Then
P (A ultimate winner) = £(0,0)
which is given by solving the linear equation system

f(0,0) =pf(1,4) + (1 -p)f(1,B)
f(,A4) =pf(2,A)+ (1 -p)f(L,B)
f(,B) =pf(1,A) + (1 —p)f(2,B)
f2,A4) =pfB,A)+1-p)f(L,B)
f@2,B)=pf(1,A)+ (1 -p)f(3B)
f3,4)=1

f(3,B)=0

p3(3—-3p+p?
—2p +p?+2p3 —p*

0,0) =
£0.0) = 7
(b) Let d = probability of a draw

Then in the transition probabilities we add

D(0,0),(0,0) = P(i,4),(0,0) = P(i,B),00) = d



and 1 — pisreplaced by 1 — p — d everywhere. Similarly in the linear equations, and the term
df(0,0) is added to the right-hand side of every equation.

3.6

3.7

3.8

Define states as

0 = start or last toss was tails
i = last i tosses were heads but not the one before, i = 1,2,3

Let i = 3 be an absorbing state. The transition probabilities become
1/2 1/2 0 0
1/2 0 1/2 0
1/2 0 0 1/2
0 0 0 1

Let u; = expected number of throws to reach state 3 from state i = 1,2. Which gives an
equation system

Ko = 1+%Ho +§#1

= 1+%H0 +%#2

Uy = 1+%#0 +%ﬂ3

ps =0

Solving this gives py = 14. Since the gain is 12 the game is not fair.

Define states i = 0,1,2, ...,6 where state i means that i of the six outcomes have appeared so
far. State 6 is absorbing. The transition probabilities become

pi =< and Piiq=1—=zfori=012..56

All other p;; = 0.

P(more than m throws needed) = 1 — p((;ﬁ").

Let X,, = Joe’s money after n runs. State space I = {10i:i = 0,1, ...,5} U {5i:i = 11,12, ...,40}.

Note that state 200 means “200 or more”. Let 0 and 200 be absorbing states. The transition
probabilities become

P1oi10¢i-1) = 0.60 and pig;10¢+1) = 025, i=1,..,5
Psisi-1) = 0.60 and ps;si41) = 0.25 and ps, 5¢i42) = 0.15, i =11,12,...,40

Poo = P200,200 = 1

The other p;; = 0.

Let u; = expected number of bets to state 0 or 200 from state s.

Mo = H200 =0



Us = 1+ 025‘[110 + 015.[115

Hio = 1+ 060[.15 + 0251,[15 + 015#20

Expected number of bets when starting in 100 is p19o = 212.29. Similarly, using a system of
linear equations gives

P(reaching 200|X, = 100) = 0.2132
3.10 Uniform means that for N states r; = 1/N. If ; is uniform we get
1 1
N:Zpij N@ZPU =1
i€l i€l
i.e. if the columns sum to 1, which they do.
3.11Let I = {win,loose} = {1,2}. Transition matrix

P=(0s0 0s0)

The equilibrium distribution is {my, 7,} = {0.4,0.6}. The long-run net amount won is
04+x250—-1=0
The game is fair!
3.12The long-run average cost equals 17.77.
3.13 (a) The long-run fraction of games won is 0.4957.

(c) Thelong-run fraction of games won is 0.5073.

3.15(a) Markov chain {X,,} = {Xfll),X,(lz)} where

X,(Li) = the age in days at the beginning of day n of componenti = 1,2.
Let M denote the failure state. The state space is

I ={(iy,i):1<iy<Ror iy =M for k =12}
Transition probabilities for 1 < i;,i, <R

(1-r)1-7) h=i+1, j,=i+1
(A=n)r, h=i+Lj,=M
r(l-n)jh=Mj,=i,+1
nr, 1=Mj, =M

Pliviz).G1j2) =



where r; = probability that component of age j fails the next day. Similar for i; = R and
1 <i, <rwithj; = 1above.Fori; = Rand i, > r,takej; = j, = 1.Viceversafor1 <i; <r
and i, = R.

(b) Let K; and K, denote the costs of replacing 1 and 2 components respectively. The long run
average cost becomes

r—1 r—1

K(r,R) = K, Z (m(iy, R) + (i, M)) + 2 (mr(M,iy) + (R, iy))

llzl i2=1

M M

+ K, Z (n(iy, R) + iy, M)) + z (n(M, i) + (R, 1)) — (M, R)

11=T =T

—n(R,M) —n(R,R) — (M, M)

3.17 Let X;,, = number of messages present at time n. Let

_ {0 if gate is closed at n
n

~ 1 otherwise

Then {(X,,, 8,,)} is a Markov chain with state space
[={@{1):i=01,..,R—1}U{(,0):i=r+1,..,R}

Transition probabilities

PanG =€

o YL
P(i,1),(R0) = Zk=R-i+1€ A; i=1.,R-1

AT

Pr+10,G0 = € "G50

0 _q Ak
p(O,l),(R_O) = Ek:Re AE

oo .y yL
Pr+1,0),(R,0) = YreR_r€ o

Pioyi-10) =1, i=7r+2,. R

(b) Long-run fraction of lost messages

R-1

[} . Ak oo /_{k
L(r,R) = Z (i1 (k—R+i- 1)e"1F + T(r41,0) Z (k—R+71) e‘lF
i=0 k=R—i+1 ' k=R-r )
+ Z T[(i,O) -1-2 + 7'[(0’1) Z(k — R)G_AE
i=r+2 k=R

3.19Recall that Erlang(r, i) can be seen as the sum of r independent Exp (1) subtasks.



Let X;, = number of subtasks present just before n. State space I = {0,1,2, ... }.

Transition probabilities fori = 0,1, ... andj = 1,2, ...,i + 7
‘ui+r—j
pij = e sy

(i+r—j!
4.1 X, (t) = number of waiting passengers at t

X, () = {1 sheroot is present at time t
z 0 otherwise

State space I = {(i,0):i =0,1,...,73 U {(i,1):i = 0,1, ... ,6}.

4.2 Let

0 ifunit i isfree attime t
X; =131 if unit i services district 1
2 if unit i services district 2

{(X1 (t), X, (t))} is a Markov chain with state space I = {(i,j):i,j = 0,1,2}

4.3 Let {X(t)} be a continuous-time Markov chain with state space I = {(0,0), (0,1), (1,1), (b, 1)}
where

(0,0) = both stations free

(0,1) = station 1 is free, station 2 busy

(1,1) = both stations busy

(b, 1) = station 1 is blocked, station 2 is busy

4.4 (a) Let X(t) = number of cars present at t. State space I = {0,1,2,3,4}.

(b) The equilibrium probabilities are given by

po = 0.3839
p; = 0.2559
p, = 0.1706
ps = 0.1137
p, = 0.0758

4.5 Let X(t) = state of production hall at time t, with state space

I'=1{(0,0),(1,0),(0,1), (1,1)}

where

(0,0) = both machines are idle

(1,0) = the fast machine is busy, the slow machine is idle
(0,1) = the fast machine is idle, the slow machine is busy
(1,1) = both machines are busy



(b) The equilibrium equations are given by

Ap(0,0) = uyp(1,0) + u,p(0,1)

(A + up(1,0) = Ap(0,0) + u,p(1,1)
A+ p)p(0,1) = uyp(1,1)

(i + 12)p(1,1) = Ap(1,0) + Ap(0,1)
p(0,0) +p(0,1) + p(1,0) +p(1,1) =1

The long-run fraction of time that the fast machine is used is given by p(1,0) + p(1,1) and the
slow machine by p(0,1) + p(1,1). The long-run fraction of incoming orders that are lost equals

p(L1).
4.6 Let X(t) denote the state of the system at time t. There are 13 states.
(0,0) = a taxi is waiting but no customers are present

(i, k) =i customers are waiting at the station, no taxi is there and the taxi took k customers last
time, i =0,1,2,3, k =1,2,3.

The equilibrium equations will be on the form

The long-run fraction of taxis waiting is Ap(0,0). The long-run fraction of customers that
potentially goes elsewhere is p(3,1) + p(3,2) + p(3,3).

4.7 Let X;(t) = number of trailers present at t

1 if unloader in finishing process
X, (t) =
2(0) {0 otherwise

The process has state space
I1={@j):i=01,..,N,j=1.2}
Equilibrium equations

Nap(0,0) = p,p(0,1)

(U + (N = DDp@E,0) = (N —i + DAp(i — 1,0) + upp(i,1), 1<i<N-1

(y + (N —DDp(, D =N —i+ DAp(i —1,1) + uyp(i+1,0), 0<i<N-1
t1p(N,0) = Ap(N — 1,0) + u,p(N, 1)

4.8 Let X;(t) = number of messages in the system at t

1 if gateisopenatt

dX,(t) =
and X, (t) {0 otherwise

State space
I={(1):i=01,..,R}U{(0):i=r+1,..,R+1}

The long-run fraction of time the channel is idle is p(0,1).



The long-run fraction of messages blocked is ¥ ~*™ . p(i, 0).

The long-run average number of messages waiting to be transmitted is

R R+1
D= DpG D+ Y (= Dp(0)
i=1 i=r+1

4.9 X(t) = number of customers at t. State space I = {0,1, ... }.

Equate the rate out of set {i,i + 1, ... } to the rate into the set and get recurrence relation

A
up; = 7Pi—1
which gives
/W'
bi = i bo
and thus
po = e_l/ll
1 i
p; = e‘l/”ﬂ, i=1.2,..

i!
The long-run fraction of persons that join the queue is

C 1 nor o,
= _ T,
Zp‘i+1 1 2°

i=0

The long-run average number of persons served per time unit is

4.10 (a) Equilibrium equations

(A + wp(0,0) = up(7,0) + Ap(6,1)

A+ wp@,0) =Ap@i—-10 i=1,..6
up(7,0) = Ap(6,0)

Ap(i,1) =p(i—-11) i=1,..,6

The long-run fraction of potential customers lost is p(7,0).
(b) Now the states are

(0,0) = no sheroot is in and none is waiting
(i,1) = i passengers are waiting and the sherootisin, i =0, ...,6

Equilibrium equations



4.12

4.16

5.1

5.2

up(0,0) = Ap(6,1)
Ap(0,1) = up(0,0)
Ap(i,1) =p(i—-11) i=1,..,6

The long-run fraction of potential customers lost is now p(0,0).
X(t) = stock at t. State space I = {1, ..., Q}.
Equilibrium equations

A+ wp, = @A+ QWpg
A+iwp=A+({+DWpiw1 i=1,..,0-1

The long-run average stock is Z?zl ip;.

The long-run average number of orders per time-unit = long-run average number of transitions
from 1 toQ =4+ wp;.

Let X(t) = number of units broken at t. State space I = {0,1, ...,s + 1}.

Construct a modified Markov chain with absorbing state a = s + 1. The state space is the
same but the leaving rates become

V= {vi fori=0,1,..,s
L 0 fori=s+1

and

{qu if i=0,1,..,s, j=01,..,s+1,i#j
9ij = 01f1—s+1

Find p;;(t) using the uniformization method where pg,; 5.1 =1
(a) X(t) = number of customers present at ¢, state space [ = {0,1, ...,c + N}
For {i,i + 1, ...,c + N} the recursive relation
min(i, )up; = Api—4
which gives

i!
A i—-c+1

A/ )N
J%po ifi=1,..,c—1
L(a) Py ifi=c,...,c+N

p; =

(b) Error in book! Should be

c+N -

W,(x) =1- . pHNZp,Z C“’“M

(a) X(t) = service requests at t.



For{i,i+1,..,N}
min(i, )up; = (N —i + Dvp;_4
which gives

I(I:]) (%)ipo ifi=1,..,c—1
bi =

l(N —c+ D!,

m Pc-1 ifi:C,...,N

5.8 {pj,J € I} satisfy the equilibrium equations. Substitute the p{‘l in these equations using the

given expression and check if it holds.
5.9 X(t) = number of containers presentatt, I = {0,1, ..., L}.
For{i,i+1,..,L}
iup; = Api—1
which gives
A
e MH (H) /i!

bi = k

Sieoe /H(5) /kd

With A =1and 1/u = 10 we get that L > 18 since

_ {0.0129 for L =17
L= 10.00714 forL = 18

5.10 X;(t) = number of cars att oftypei = 1,2

{X(t)} = {(Xl(t),XZ(t))} has state space I = {(iy,i,):i1,i, =0,1,...,¢, i1y + iy < c}

AN (202
() ()

A

i1,ip) =
p(iy, i3) (h)k1 (ﬁ)kz
Z Hq KUy
kqitky<c k1! k2!
Ploss - p(kpkz)

5.14 X(t) = number of working componentsatt¢, I = {0,1, ..., c}
For{i,i+1,..,c}
iap; = Bpi-1

giving the truncated Poisson as usual.



The long-run fraction of time the system is down is then = p,.

(b) No, due to the insensitivity property.



