
Chapter 1

Robustness and Distribution
Assumptions

1.1 Distribution Assumption in Statistics

1.1.1 Introduction

In statistics, one often works with model assumptions, i.e., one assumes that data follow
a certain model. Then one makes use of methodology that is based on the model
assumptions.

With the above setup, chosing the methodology can be a quite delicate issue, since
the performance of many methods may be very sensitive to whether the model assump-
tion hold or not. For some methods, even very small deviations from the model may
result in poor performance.

Methods that perform well, even when there are some (more or less) minor deviation
from the model assumption, are called robust.

1.1.2 Distribution Assumption in Statistics

Let X be a real-valued random variable (r.v.), which is assumed to have a certain specific
distribution function F : R→ [0, 1]. Here F is allowed to depend on a parameter θ ∈ Rm,
so that the distribution can be written as

P{X ≤ x} = F (x; θ) for x ∈ R.

The parameter θ is assumed to have a certain specific value, which is normally not
known.

Example 1.1. The random variable X is assumed to have normal N(µ, σ2) dis-
tribution for some (unknown) selection of the parameter θ = (µ, σ2) ∈ R× R+.

The above-mentioned type of scenario, or variants there of, are the frameworks for
parametric statistic methods. One example, where the method uses a distributional as-
sumption in a crucial manner, is analysis of variance, which assumes normal distribution,
and it is not applicable when that assumption is violated.

Observe that, in practice, one can usually not uncritically accept assumptions on
the distribution as valid. Hence it is important to be able to determine if the data really
comes from an assumed distribution F (·; θ), for some value of the parameter θ.
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2 CHAPTER 1. ROBUSTNESS AND DISTRIBUTION ASSUMPTIONS

Let X1, . . . , Xn be a random sample of X, i.e., independent random variables with
the same distribution as X [which is F (·; θ) if the assumption on the distribution holds].
For the above mentioned reasons, it is often of importance to determine whether the
distribution of X really is F (·; θ). This cannot be done in a completely precise manner,
as we have randomness.

In fact, to test the distribution assumption F (·; θ), one has to use some statistical
test, which hopefully, with a large probability of being correct, can tell whether the data
obeys the assumption.

1.2 Parameter and Density Estimation

1.2.1 Maximum Likelihood Estimation

Let x1, ..., xn be random sample from a r.v. X (assumed) having density fX(x; θ). The
likelihood function is defined as

L(θ; x1, ..., xn) = f(x1, ..., xn; θ) =
n∏

i=1

fX(xi; θ).

Note that it is a function of the parameter θ, the values x1, ..., xn come from our obser-
vations! The maximum likelihood (ML) estimator of θ is

θ̂ = arg max
θ∈Rm

L(θ;x1, ..., xn).

It is often easier to regard the logarithm of the likelihood function, , i.e. l(θ;x1, ..., xn) =
log L(θ;x1, ..., xn), and maximize this instead.

Example 1.2. Let x1, ...xn be a random sample from a r.v. which is Exp(λ)-
distributed, i.e. fX(x; λ) = λ e−λx. This means that the likelihood function be-
comes

L(λ; x1, ..., xn) = λn
n∏

i=1

e−λxi .

In this case it is analytically more tractable to regard the log-likelihood function,
i.e.

l(λ;x1, ..., xn) = n log λ− λ
n∑

i=1

xi.

The ML-estimator is
λ̂ =

n∑n
i=1 xi

=
1
x

.

1.2.2 Kernel Density Estimation

Let Y1, ..., Yn be a random sample from a r.v. having unknown density fY (y; θ). A kernel
estimate of f(y; θ) is

f̂(y; h) =
1
n

n∑

i=1

Kh(y − Yi).
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Here Kh(t) = 1
hK(t/h), where K(s) is a function satisfying

∫
K(s)ds = 1, which we call

a kernel and h is called the bandwidth. Two widely used kernels are the Gauss and the
Epanechinov kernel. They are defined respectively as

KG(s) =
1
2π

e−s2/2, (1.1)

KE(s) =
3
4
(1− s2)1{|s|<1}. (1.2)

Figure 1.1. The Gauss (-) and the Epanechnikov (- -) kernels (h=1).
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Example 1.3. Consider a r.v. Y which is a mixture of normal distributions, i.e.

Y = UX + (1−X)V,

where X ∼N(1, 1), Y ∼N(5
2 ,

(
3
8

)2) and X ∼Ber(5
8) and independent. The density

of Y is

fY (y) =
5
8

1√
2π

e−
(y−1)2

2 +
1√
2π

e
− (y− 5

2 )2

2( 3
8)

2

.

In figure 1.2 below we see kernel density estimates, using three different band-
widths, of fY (y) based on a simulated random sample of size n = 1000.
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Figure 1.2. fY (y) (-) and kernel density estimates of fy(y) (- -) (a): h = 0.05, (b):
h = 0.5, (c): h = 0.2.

−2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) (b) (c)

As we see in example 1.3, choosing the bandwidth is an important issue. One way
of doing this is to do a least squares cross-validation, which means to chose the h that
minimizes

LSCV(h) =
∫

f̂(x; h)2dx− 2
n

n∑

i=1

f̂−i(Xi;h),

where

f̂−i(Xi; h) =
1

n− 1

n∑

j 6=i

Kh(x−Xj),

i.e. doing the estimation when observation i is removed.

1.3 Test of Distribution Assumptions

1.3.1 Graphical Test of Distribution Assumptions

We start with stating some facts that will be of importance to us:
Let X be a random variable that have a continuous distribution function F . Then

the random variable F (X) has a uniform distribution over [0, 1]. To see this, just notice
that

P{F (X) < x} = P{X < F−1(x)} = F (F−1(x)) = x for x ∈ [0, 1]

Here F−1 is a generalized inverse, if F is not invertible.
The above fact is very useful, because it says that if we have a sample of random

variables, and we want to perform a transformation so that they become uniformly
distributed over [0, 1], then the transformation should (more or less) be the distribution
function!

Now, as a direct consequence of the Glivenko-Cantelli theorem1 (see Chapter 3), we
have the following theorem:

1The Glivenko-Cantelli theorm says that the empirical distribution function of a sample of a random
variable converges uniformly to the distribution function of the random variable, as the sample size
tends to infinity.
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Theorem 1.1. If the sample X1, . . . , Xn has distribution function F (·; θ), then
for the ordered sample X(1) ≤ . . . ≤ X(n), we have

lim
n→∞ max

1≤i≤n

∣∣(i− 0.5)/n− F (X(i); θ)
∣∣ = 0.

Now, if the assumption that the sample X1, . . . , Xn has the distribution function is
F (·; θ) is correct, then, according to Theorem 1.1,

max
1≤i≤n

∣∣(i− 0.5)/n− F (X(i); θ)
∣∣ ≈ 0 for large n.

Consequently, a plot of the sequence of pairs
{(

(i− 0.5)/n, F (X(i); θ; )
)}n

i=1
,

a so-called pp-plot, is approximately a 45◦-line. The same is then true for a so-called
qq-plot of the sequence

{(
X(i), F

−1((i− 0.5)/n); θ
)}n

i=1
.

A systematic discrepancy of a pp-plot or qq-plot from a 45◦-line indicates that the
F (·; θ)-assumption is not true. Notice that, because of randomness, these plots never
become completely straight-lined, for a finite sample size n, even when the F (·; θ)-
assumption holds, but always disply a certain random variation around the 45◦-line.
The larger n, the smaller that random variation becomes.

When the F (·; θ)-assumption is false, an additional systematic discrepancy from the
45◦-line occurs, resulting in an (in some sense) curved plot.

Normally, the value of the parameter θ is not known, and hence must be estimated
by an estimator θ̂. Supposing that F (·; θ) is a continuous function of θ, and that the
estimator θ̃ is consistent, i.e., that it converges to θ when n →∞, the following pp- and
qq-plots would be approximate 45◦-lines

{(
(i− 0.5)/n, F (X(i); θ̂)

)}n

i=1
and

{(
X(i), F

−1((i− 0.5)/n); θ̂;
)}n

i=1
,

when the F (·; θ)-assumption holds.
The decision whether a pp- or qq-plot displays systematic discrepancy, or only ran-

dom variation discrepancy, from a 45◦-line, is conveniently done by means of a compari-
son with a reference plot, without systematic discrepancy. This in turn, can be done by
generating a sample Y1, . . . , Yn from a random variable Y that really has the distribution
function F (·; θ), or F (·; θ̂) if θ is unknown and estimated, so that the pp-plot

{(
(i− 0.5)/n, F (Y(i); θ; )

)}n

i=1
or

{(
(i− 0.5)/n, F (Y(i); θ̂)

)}n

i=1
,

and the qq-plot

{(
Y(i), F

−1((i− 0.5)/n); θ;
)}n

i=1
or

{(
Y(i), F

−1((i− 0.5)/n; θ̂)
)}n

i=1

display only random variation discrepancy from a 45◦-line.
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Of course, systematic variations from a 45◦-line can be hidden by large random vari-
ations, when the sample size n is small in relation to the that the systematic variation. A
non-significant pp- or qq-plot, without clear systematic variations from a 45◦-line, does
not necessarily imply that the F (·; θ)-assumption is true: Recall that a non-significant
outcome of a statistical hypothesis test does not necessarily imply that the null hypoth-
esis is true!

However, with a non-significant pp- or qq-plot, one can conclude that the random
variation of the data material is similar to the variations of true F (·; θ)-data. This in
turn, hopefully, should be enough for making practical use of the F (·; θ) assumption, at
least with robust methodology.

1.3.2 Statistical Test of Distribution Assumptions

In the previous section we described how to test a distribution assumption qualitatively,
by a graphical procedure. However, to do it quantitatively, we have to employ a test,
which produces a statistic, and hence gives us a p-value, that may be significant or
non-significant, in turn.

Chi-Square Goodness-of-Fit Test

With the chi-square test, given an assumed continuous or discrete distribution F (·; θ)
for a sample, one can assign probabilities that a random variable has a value within
an interval, or a so called bin. Quite obviously, the actual value of the chi-square test
statistic will dependent on how the data is binned.

One disadvantage with the chi-square test, is that it is an asymptotic test (rather
than exact one), i.e., it requires a large enough sample size in order for the chi-square
approximation to be valid. As a rule of thumb, each bin should contain at least 5
observations from the sample.

The chi-square test statistic of k bins is given by

χ2 =
k∑

i=1

(Oi − Ei)2

Ei
,

where Oi is the observed frequency for bin i, i.e., the number of observations that lies
in the bin (li, ui], and

Ei = n[F (ui; θ̂)− F (li; θ̂)]

is the expected frequency of bin i, with F denoting the assumed distribution function.
Here n is the sample size, as before, and l1 < u1 < l2 < u2 ≤ . . . ≤ lk < uk, with k
being the number of bins.

Under the null hypothesis, that the F -assumption is true, the test statistic χ2 follows,
approximately, a chi-square distribution, with k − c degrees of freedom, where c is the
number of estimated parameters.

Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov test is applicable when assuming a continuous distribution F
for the sample X1, . . . , Xn. The test statistic is given by

D = max
1≤i≤n

∣∣∣F (X(i); θ̂)−
i

n

∣∣∣,
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were X(1) ≤ . . . ≤ X(n) is the ordered sample. As before, all unknown parameters for F
have to be estimated. (We have previously used (i− 0.5)/n instead of i/n: This choice
is really only a matter of taste, and of no practical importance!)

Observe that the Kolmogorov-Smirnov statistic D is a measure of how much a pp-
plot deviates from a 45◦-line.

To calculate the p-value for D, one makes use of the fact that
√

nD is asymptotically
Kolmogorov distributed, under the null hypothesis. The distribution function of the
Kolmogorov distribution is given by

Q(x) = 1− 2
∞∑

i=1

(−1)i−1e−2i2x2
.

In practice, there is seldom any need to do manual computations with the Kol-
mogorov distribution, as the computations are handeled by statistical programs.

Some extension of the Kolmogorov-Smirnov test has been made, to emphasize certain
regions of values. One important example, is the Kupier test, with test statistic

K = max
1≤i≤n

(
F (X(i); θ̂)− i/n

)
+ max

1≤i≤n

(
i/n− F (X(i); θ̂)

)
.

A Kuiper test emphasize the importance of the tails, i.e., the smallest and largest
observations. This is of importance in applications to assement of risk.

1.4 Robust Estimation

One of the most natural illustrations of robust estimation techniques, is the estimation
of a location parameter, of a continuous symmetric distribution: Assume that we have
a sample X1, . . . , Xn from a distribution function of the form F (x; θ) = F (x−θ), where
θ ∈ R. Here θ is called a location parameter.

Example 1.4. If F is a normal distribution, then θ coincides with the expected
value and the median. Further, the sample mean

X̄ =
1
n

n∑

i=1

Xi

is a good estimator of θ.

Example 1.5. If X is Cauchy distributed, i.e. having density function

fX(x; θ) =
1

π(1 + (x− θ)2)
,

then the sample mean is not a good estimator of the location parameter θ. The
reason for this is that the Cauchy distribution allows, with a large probability
very large values, and does in fact not even have a well-defined (finite) expected
value. This means that the sample may display some extremly small or large
“non-typical” values, so called outliers, and a few such may heavily influence the
sample mean, so that it deviates significantly from θ.
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To avoid the problem indicated in Example 1.5, one may, for example, replace the
sample measn with the sample median, as estimator of the location parameter: The
latter does not display the sensitivity to outliers, as does the former. In other words,
the sample median is a robust estimator.

Robustness can, of course, be defined in mathematical terms. That desription usu-
ally is based on the influence function, which measures the sensitivity to outliers. How-
ever, this subject matter goes beyond the scope of this course.

An intuitive way, to view the issue of the robustness of an estimator, is to look at
the breakdown point. This is the largest percentage of data points that can be changed
arbitrarily, without causing undue influence on the estimator.

Example 1.6. The sample median has 50% breakdown. This is illustrated by the
fact that, for a sample of 100 ordered data, the first 49 can be changed arbitrarily,
as long as their values stay smaller than the 50:th smallest observation, without
affecting the value of the sample median at all.

The sample mean is not a robust estimator, because changing the value of a single
observation may heavily influence the value of the sample mean. This means that
the sample mean has breakdown point 0%.

In practice, the choice of estimator is a trade-off between robustness and eficiency,
as very robust estimators tends to be inefficient, i.e., they do not make full use of the
data material.

It should be noted that robustness is related to the concept of non-parametric statis-
tics, i.e., statistical methodology that do not rely on distribution assumptions.

Naturally, there exist robust estimators for other things than location parameters.
Many robust est]imators can be grouped into one of the following three different classes:

M-estimators, which are based on maximum-likelihood arguments: These estimators
are commonly used in the fitting of models and parameter estimations.

L-estimators, which are linear combination of order statistics. The sample median
and the trimmed mean (that will be presented in the laboration below) are examples
on this.

R-estimators, which are based on rank tests: The Kolmogorov-Smirnov statistic is
an example on this.

1.5 Some Tips on Matlab

Matlab a very common mathematical programme package, that is quite easy to use.
The program has many built in functions, and as it is widely spread, one can search the
internet for additional free software libraries.

When using Matlab, one should get used to employ its built in help function. That
help function can be reach, simply by writing help subject. For example, help stats
gives a list of all function in the statistical toolbox, while help hist gives help on the
function hist. In addition, one can make use of the commands helpdesk and helpwin,
for easy access to help.

When using Matlab, one should make use of an editor, rather than writing commands
directly in the Matlab window. The reason for this is that, when writing long programs,
it is convenient to have everything in “one place”, easily accessible and editable.
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One may use the built in editor of Matlab. But this is not recommended as it
sometimes is “unstable”. Instead, it is recommended to start Matlab with matlab
-nojvm, and make use of the emacs editor: To run a Matlab program, written with
emacs, save the code to a m-file, called foo.m, say. Notice that one have to save the file
to the directory that Matlab is run from, in order to avoid specifications of paths.

If a Matlab m-file is a function, then one will not have access to objects created
within that function, as they are well-defined “locally” only, inside that function.

When plotting, it is nice to have colourfull graphs. However, when you print those
graphs, they will usually be black and white. Hence it is a good practice to design the
graphs, so that they work well also in black and white. One example of this, is to use
solid, dotted and dashed lines, etc. to distinguish different graphs, rather than different
colours only. It can be quite useful, and is simple, to add a Matlab legend to a plot.

Sometimes, Matlab can be really slow especially when one uses loops. Always try
to avoid loops, when there is an alternative! For example, sometimes a (slow) loop can
be replaced with a (quicker) vector multiplication.

1.6 Laboration

1.6.1 Test of Distribution Assumptions

The file ibm.txt contains the stock prizes St of the IBM stock for every trading day t
beteween 1964-2004. The corresponding logreturns Xt are defined as the logincremets

Xt = log(St/St−1) = log(St)− log(St−1).

It is a common assumtion, in the world of mathematical finance, that the logreturns
are normal distributed.

1. Load ibm.txt into Matlab with the command load ibm.txt.

Before doing this, do not forget to put a % on the beginning of first line of data
file ibm.txt, with the emacs editor. This have to be done, because the first line
of the data file are character headers, with variable names. And Matlab cannot
read that text, so that Matlab has to be instructed to neglect it.

Now, in the variable ibm you have the data.

2. Write a program to compute the 1000 first logreturns from column number 7, which
contains the stock prizes St.

Observe that one cannot divide with 0. This means that one has to neglect such
data, if they exist. Also, modify the indexing of the vector, so that the first
observtaion has index 1, the second 2, and so on, rather than their actual dates.

Now, putting the calculated logreturns in the variable logret, one can plot the
normalized stock prizes with the command plot(exp(cumsum(logret))).

3. Derive the ML-estimates of µ and σ2, if we assume the logreturns to be independent
and N(µ, σ2)-distributed.

Do a kernel density estimate and plot it together with the estimated normal density.
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4. Produce a qq- or pp-plot based on the normal distribution assumption.

Test the normal distribution assumption graphically, by means of compareit with
a reference plot, based on a sample with normal distributed random variables.

5. Perform a quantitative test to investigate if the logreturns are normal distributed.

1.6.2 Effects of Distribution Assumption

Assume that X1, . . . , Xn is a random sample form a normal distribution with paraneters
µ and σ. Now, an estimator for the variance σ2, when µ is not known, is the sample
variance

s2
X =

1
n− 1

n∑

i=1

(Xi − X̄)2,

where X̄ is the sample mean.
Now, if the normal distribution assumption holds, then s2

X is a sum of n squared
normal distributed random variables, so that

(n− 1)s2

σ2

is chi-square distributed, with n− 1 degrees of freedom. Based on this information, we
can calculate a confidence interval for σ2:

1. Generate 100 normal distributed random variables with parameters µ = 0 and
σ = 1. Calculate a confidence interval for σ2, with confidence level 0.95.

Repeat the above procedure 1000 times, and count the number of intervals which
contains σ2. Also, calculate the avarage width of the intervals.

How does this compare with what you expect from the confidence level being 0.95?

2. Now do the same thing all over again, but this time for a Student t distributed
random sample X1, . . . , Xn, with a parameter ν > 2. (That is, calculate the
intervals under the assumption of normal distribution, but using the Student t
random sample.)

Remember that the Student t distribution has variance ν/(ν − 2).

How does the result compare with what you expect from the confidence level being
0.95? What is the average width of the intervals? Draw conclutions!

3. Play around with the parameters to confirm conclusions.

1.6.3 Robust Estimation

An ε-contaminated normal distribution may be defined as

X = WY + (1−W )Z =
{

Y with probability 1− ε
Z with probability ε

.

Here Y ∼ N(0, σ2
Y ), Z ∼ F , and W ∼ Bernoulli(1 − ε), with ε ∈ (0, 1) being a small

number. Further, F is another distribution than the N(0, σ2
Y ) distribution, that usu-

ally displays much wilder fluctuation (i.e., more extreme values) than does the normal
distribution.



1.6. LABORATION 11

This contaminated distribution can be viewed as that some phenomena usually is
what is observed, at the rate of 1 − ε, but that some othe phenomena is observed, at
the rate ε. In practice, this can be caused by somebody occasionally making a faulty
measurement, or a sloppy computer registration of a result.

As the contaminated distribution is not normal, it can be difficult to analyze. In ad-
dition, when using a model of this kind, one is usually interested in the non-contaminated
random variable Y , rather than the contaminated variable X.

One common way to handle the contaminated data, is to remove outliers. Notice
that this is correct, if one is only interested in Y , but might be erroneous if really
interested in the contaminated distribution of X.

1. Use the contaminated distribution with σY = 1, F Cauchy distributed with location
parameter 0, and ε = 0.05, to estimate the expected value of X 1000 times with a
sample mean of size 100.

For simulation of the Cauchy distribution, one can make use of the fact that a
Cauchy distribution with location parameter 0 is the same thing as a Student t
distribution, with 1 degree of freedom.

2. Order the results and register the value of results number 25 and 975.2 Also, make
histogram plots of the results.

3. Repeat the above tasks, but this time replacing the sample mean with the robust
estimators, made up of the sample median, and of the α-trimmed mean

X̄α =
X(k+1) + . . . + X(n−k)

n− 2k
with α =

k

n
,

respectively, where and X(·) againg is the ordered sample. Choose α = 0.1.

Again, order the results and register the value of results number 25 and 975. And
plot histograms of the results. Conclusions?

2The range between these two values does in fact make up a bootstrap confidence intervall for the
expected value of X, with conficence level α = 0.95: We will return to this in Chapter 3.


