
Chapter 2

Decision Theory

2.1 Introduction

Everyday one faces problems which call for decisions.

Example 2.1. At a summer evening, a person makes plans for the next day, and
chooses between going to the beach or to go shopping. If next day is sunny, the
beach is the best choice, but if the weather is less good, it is best to go shopping.
How should the person decide what plans to make (if really having to plan ahead,
already the evening before)?

The difficulty, in the above example, is that the weather for tomorrow cannot be
known, with complete certainty, so that it is a question of a decision under uncertainty.

Decision theory makes science of the art of making good decisions under uncertainty.

2.1.1 Decision Theory and Utility

In decision theory one defines a set a of actions, which one can choose to take. The result
of the action depends on the value of the state x, which usually is random, a = a(x).

Different states x appear with different probabilities. The corresponding probability
density function is denoted f(x), and may be discrete or continuous, corresponding to
a discrete or continuous state space, respectively. It follows that the action a = a(x) is
a random variable.

Example 2.2. A person has a choice between getting 4.000.000 SEK with cer-
tainty, or tossing a coin and get 10.000.000 SEK if the result is tails, and nothing
otherwise.

In this example, for the two actions a1 and a2, we have

a1(x) =

{
4.000.000 for x = tails
4.000.000 for x = heads

a2(x) =

{
10.000.000 for x = tails

0 for x = heads
.

The state space i {tails, heads} is discrete with probability density function
f(tails) = f(heads) = 1

2 .

To make scientific the concept of making a good decision, about what action to take,
one has to specify the utility U(a) of different actions a. The utility measures “how
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much good” comes out of different actions.
As actions a = a(x) are random variables, also utlities U(a) = U(a(x)) are random

variables. The best action is the one that maximizes the expected utility

E{U(a)} =

{∫
x U(a(x))f(x) dx for continuous state space∑

x U(a(x))f(x) for discrete state space
.

As common as it is to speak about utility, it is to speak about risk : The risk R(a)
measures “how much pain” comes out of different actions. Again the risk is a random
variable. And the best action is the one that minimizes the expected risk

E{R(a)} =

{∫
x R(a(x))f(x) dx for continuous state space∑

x R(a(x))f(x) for discrete state space
.

Example 2.2. (Continued) If not very rich already, the person would probably
choose to get 4.000.000 with certainty. However, if having a lot of money already,
the second option could be argued to be a better choice, as the expected value of
the gain, 5.000.000 SEK, is larger than for the first option.
If not very rich, the utility could be Upoor(a) =

√
a/10.000.000, while in the second

case, the utility could be linear Urich(a) = a/10.000.000. For the two actions a1

and a2, this give

E{Upoor(a1)} =
∑

x∈{tails,heads}
U(a1(x)) =

√
4.000.000
10.000.000

· 1
2
+

√
4.000.000
10.000.000

· 1
2

= 0.63

and

E{Upoor(a2)} =
∑

x∈{tails,heads}
U(a2(x)) =

√
10.000.000
10.000.000

· 1
2

+

√
0

10.000.000
· 1
2

= 0.5,

whilst

E{Urich(a1)} =
∑

x∈{tails,heads}
U(a1(x)) =

4.000.000
10.000.000

· 1
2

+
4.000.000
10.000.000

· 1
2

= 0.4

and

E{Urich(a2)} =
∑

x∈{tails,heads}
U(a2(x)) =

10.000.000
10.000.000

· 1
2

+
0

10.000.000
· 1
2

= 0.5.

This quantifies that action a1 is better than a2, if not very rich, while it is the
other way around, if very rich.

Often in practice, it is quite hard to find a correct utility U . However, when that has
been done, the problem of finding the best action has been reduced to an optimization
problem, to find the action a that maximizes E{U(a)}.

One obvious general rule for utilities, is that if an action a1 is preferred to another
action a2, then one should have E{U(a1)} > E{U(a2)}.
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Concave utility functions are called risk-averse, convex ones risk-seeking, while linear
utilities are risk-neutral.

Example 2.2. (Continued) The utility Upoor is risk-averse, while the utility Urich

is risk-neutral.

2.1.2 More Aspects on Decision Theory

Consider a problem of parameter estimation. In general, there are many methods to
choose between.

A common choice of method for parameter estimation is the maximum likelihood
method. As indicated by the name, the parameter estimates produced by this method
are those that maximize the probability that the sample has occurred.

Now, if one is estimating parameters in order to be able to forecast an event, should
one then use maximum likelihood? Well, the answer is that one should use a method
which maximizes the precision of the forecast. Albeit this is quite obvious, it could be
quite difficult to find the proper method.

When estimating parameters, one should always keep in mind the purpose of the
estimate, and choose a method that is a good to that end.

Example 2.3. Consider a linear model

Y = β0 + β1X + ε,

where ε is zero-mean normal distributed. Given a sample {(xi, yi)}n
i=1 of (X,Y ),

the parameters β0 and β1 can be estimated, using the maximum likelihood, by

β̂ml
0 = ȳ − β̂1x̄ and β̂ml

1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

.

The same estimators are obtained by minimizing the sum of squared deviations

n∑

i=1

(yi − (β0 + β1xi))
2 .

If, given a value of x, we are interested in forecasting the corresponding value of
y = β0 + β1x, then, rather than using the forecast y = β̂ml

0 + β̂ml
1 x, the best thing

would be to forecast y = β̂0 + β̂1x, where β̂0 and β̂1 minimize

|(β0 + β1x)− (β̂0 + β̂1x)|.

This is done by a so called crossvalidation to minimize the sum of deviations

n∑

i=1

|yi − (β0 + β1xi)|

The problem can now be solved by numerical methods, without further analysis.
A numerical algorithm to solve the problem could look like this:

smallest scorfunction = 1000000000
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for beta0 in a intervall
for beta1 in a intervall
calculate scorefunction
if scorefunction<smallest scorefunction

smallest scorefunction=scorfunction
best beta0=beta0
best beta1=beta1

end if
end

end

2.2 Statistics of stocks

The world of finance is very often subjected to decisions. Consider how to select a
portfolio of stocks where one can choose from virtually thousands of different stocks.
This can of course be done by a stock broker who is an expert in a branch but in the
long run one would like to complement a portfolio with stocks that gives the highes
possible yield to the least possible risk.

2.2.1 Model

A stock can be considered as a non-stationary process which of course is really hard
to model. Instead one consider returns (or logreturns) of the stock, i.e. the relative
movement of a stock during a time period. Historically, returns are considered to be
independent and normally distributed. The independence assumption comes from the
fact that no one should be able to predict the stock market tomorrow and be able to
make money without risk.

In mathematics, one can consider the stock market as n stocks, S1(t), . . . , Sn(t),
with returns(or logreturns) X1(t), . . . , Xn(t) to be assumed independent in time and
normal distributed. Here we have X1(t) = (S1(t) − S1(t − 1))/S1(t − 1) or X1(t) =
log(S1(t)/S1(t − 1)). Using this probabilistic model is it straight forward to find an
optimal portfolio and that is the goal of this laboration.

2.2.2 Model Check

In Project 1 we learnt how to check distribution assumptions with QQ-plots and e.g.
the Kolmogorov-smirnov test. However, in mathematical finance it is also of impor-
tance to investigate the independence assumption. Remember that the definition of
independence for two random variables X and Y is

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y)

but how do one test for independence in time if one has observations X1(0), X1(1), . . . , X1(tk)?
The answer is partly that one do not. Instead of testing independence one test linear
dependance (correlation) which in the normal case is equivalent. Correlation between
to random variables X and Y is defined as

Corr(X,Y ) =
Cov(X, Y )√
var(X)var(Y )

=
E{(X −E(Y ))(Y − E(Y ))}√

var(X)var(Y )
.
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Remember from basic course: The correlation is always 0 for two independent random
variables. The opposite is not true. Two random variables with 0 correlation can indeed
be dependent. To see this, regard the following two random variables

X =





1 , with prob. 1/3,
0 , with prob. 1/3,
−1 , with prob. 1/3,

and Y = X2. Then, X, Y are dependent by the definition of Y . Now, since E(X) = 0,
the covariance is

Cov(X,Y ) = E{XY } =
∑

i∈{−1,0,1}

∑

j∈{0,1}
ijP (X = i, Y = j) =

∑

i∈{−1,1}
iP (X = i, Y = 1)

=
∑

i∈{−1,1}
iP (X = i) = −1

3
+

1
3

= 0,

which means that the correlation is also 0. Dependent random variables can have 0
correlation. If we instead would have defined Y = aX, then Cov(X,Y ) = a2 · var(X).
As stated above, covariance is a measure of linear dependence!

Now, if we continue with the returns from stock 1, X1(0), . . . , X1(t), we must con-
sider the time aspect. In this case we will regard X1(0), . . . , X1(t) as observations from
a realization of a stochastic process. We will then regard the autocorrelation function
(acf), which is defined as

rX1(t, h) =
Cov(X1(t), X1(t + h))√

var(X1(t)) var(X1(t + h))
.

Note that rX1(t, t) = var(X1(t)). Under some assumptions of stationarity, the acf only
depends on the time lag, h. This implies

rX1(h) =
Cov(X1(0), X1(h))

var(X1(0))
.

We can estimate the acf by

r̂X1(h) =
(t + 1)

∑t−h
i=0 (X1(i)−X1)(X1(i + h)−X1)

(t− h + 1)
∑t

i=0(X1(i)−X1)2
,

where

X1 =
1

t + 1

t∑

i=0

X1(i).

The function r̂X1(h) is known as the sample auto correlation function.
Now, as one is interested to investigate linear independence one has to ask oneself

how small the sample acf must be to be interpret as linear independence. It turns out
that, under some assumptions, for independent data,

lim
n→∞

√
nr̂X1(h) ∼ N(0, 1),
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Figure 2.1: Top left plot: Simulated MA(1) with a=0.5. Top right plot: Sample ACF for
simulated MA(1). Straight line is the 95% confidence interval for independence. Bottom left
plot: Simulated white noise. Bottom right plot: Sample ACF for simulated noise. Straight line
is the 95% confidence interval for independence.

This can be used to construct a 95% confidence interval for independent data. Hence,
for n sufficient large we assume linear independence if

|r̂X1(h)| ≤ 1.96/
√

n.

Now, to investigate independence it is common to continue the analysis with esti-
mation of f(X1(0)), . . . , f(X1(t)), for instance with f(x) = |x|. If one still has no linear
dependence for the transformed data one assumes independence.

Example 2.4. Consider a process X(t) = ε(t)− aε(t− 1) where ε(t), t = 0, . . . are iid.
This process is called a Moving Average process of degree 1 (MA(1)). Clearly, we will
have a dependence between X(t) and X(t+h) for h = 1, otherwise we have independence.
In Figure 2.1 we have simulated the process with noise modelled as ε(t) ∼ N(0, 1) and
a=0.5 and estimated the sample acf. We have also plotted the noise and its sample acf.
Although the processes looks similar they have very different dependence structure.

Example 2.5. Consider a process X(t) = ε(t) + aX(t − 1) where ε(t), t = 0, . . . are
iid. This process is called an Auto Regressive process of degree 1 (AR(1)). Clearly, we
will have decreasing dependence between X(t) and X(t+h) for h > 1. In Figure 2.2 we
have simulated the process with noise modelled as ε(t) ∼ N(0, 1), a=0.5 and X(0)=0 and
estimated the sample acf. We have also plotted the noise and its sample acf. Although
the processes looks simular they have very different dependence structure.

2.3 Mathematica

Mathematica is a very versatile mathematical program package. As in virtually any
program, there is a helpbrowser, which is activated with punching help: One should get
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Figure 2.2: Top left plot: Simulated AR(1) with a=0.5. Top right plot: Sample ACF for
simulated AR(1). Straight line is the 95% confidence interval for independence. Bottom left
plot: Simulated white noise. Bottom right plot: Sample ACF for simulated noise. Straight line
is the 95% confidence interval for independence.

used to make use of this helpbrowser!
All Mathematica commands begin with a capital letter. Arguments of Mathematica

functions are given within brackets, for example, the sample mean of data is calculated
with Mean[data]. A command is executed with shift+return.

Mathematica have many libraries, that have to be loaded to be accesable. For
example, the command <<Statistics‘DescriptiveStatistics‘ loads the library for
desciptive statistics, that include the Mean-funtion.

Notice that if, for example, one use the function Covariance before loading the
corresponding library with <<Statistics‘MultiDescriptiveStatistics‘, then the
command Covariance is already “occupied” when one tries loads the library, which
makes the command breakdown. (At least there is a risk for that.)

A very important tip is to always use the command Clear[Symbol], before defining
Symbol, in order to avoid that old conflicting definitions “disturb” new definition.

Mathematica can fabricate plots in .eps/.ps format in several ways: One way is to
mark the image by left clicking on it, and right click in the frame that occurs around
the image. Select File in the menu, and then Print Selection. If you do not want
headers or footers on the image, they can be removed by clicking File followed by
Headers and Footers, and then select No header on first page or No footers on first
page, respectively. Another way is to name the plot, name=Plot[. . .], and then just type
Export[“image.eps”,name].

Here is an example of a Mathematica program:

In[1]:= Clear[w]; w:={w1,w2,w3}
In[2]:= Clear[f]; f[w_]:=Sum[Sqrt[w[[i]]],{i,1,3}]
In[3]:= NMaximize[Flatten[{f[w],Table[w[[i]]>=0,{i,1,3}],Sum[w[[i]],
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{i,1,3}]==1}],w]
Out[3]= {1.73205,{w1->0.333333,w2->0.333333,w3->0.333333}}

which could also have been written

In[4]:= Clear[f]; f[w1,w2,w3]:=Sqrt[w1]+Sqrt[w2]+Sqrt[w3]
In[5]:= NMaximize[{f[w1,w2,w3],w1>=0,w2>=0,w3>=0,w1+w2+w3==1},

{w1,w2,w3}]
Out[5]= {1.73205,{w1->0.333333,w2->0.333333,w3->0.333333}}

Also, if one would like to manipulate matrices, for instant to create logreturns from
stock data the function Table[. . .] is very useful.

2.4 Laboration

2.4.1 Portfolio Optimization

A person has 7 different stocks available to create a portfolio. Of course, the person
would like to earn as much money as possible with as low risk as possible. There
exist time series from 2004-06-03 to 2006-06-01 for stock prices in the file stockdata.tsv.
The stocks are AstraZenica, Electrolux, Ericsson, Gambio, Nokia, Swedish Match and
Svenska Handelsbanken which are in column 2 to 8. The first column is a date vector.

This laboration has two parts. The first one is a statistical investigation and in the
second part a portfolio optimization is performed. It is preferable to use matlab in the
first part.

2.4.2 Model investigation

1. Play around with the stock data to check for the distribution of logreturns. Give
standard statistics and interpret the dependence between the stocks in terms of
economics.

2. Estimate the acf for logreturns of a few different stocks, together with confidence
intervals for independent data. Do it also for squared logreturns. Conclusions?
Try to interpret the findings in terms of economics.

2.4.3 Portfolio optimization

The following utility function is used

U(x) = 1− e−kx,

where k > 0 is a constant. The utility function can describe the persons relation to risk
versus money.

1. Play around with the utility and describe its features, for different values of k.

2. Calculate, using Mathematica, the expected utility when the returns are jointly
normal distributed, with different vectors of expected values and covariance ma-
trices.
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Notice that, under the above assumption, the portfolio becomes normal dis-
tributed, with expected value z = µT w and variance σ2 = wtQw, where w is
a vector describing the proportion of money is spent in different stocks, µ is the
expected value of the joint normal distribution and Q its covariance matrix. This
gives

E{U(w)} =
∫ ∞

−∞
(1− e−kx)

1√
2π σ

e−((x−z)2/(2σ2) dx.

3. Estimate the meanvector and the covariance matrix, for the above mentioned joint
normal distribution, using the data file stockdata.tsv.

4. We are faced with problem to maximize E{U(w)} under the constraints

w1, . . . , wn ≥ 0 and
n∑

i=1

wi = 1.

Show that the problem is equivalent with the quadratic problem to maximize

µT w − k

2
wtQw.

5. The task now is to investigate how the selection of k alters the proportion of
money in each stock. Use NMaximize in Mathematica to solve this problem. Why
do the the weights alter as they do?

It could be a good idea to try to solve the problem first for only two stocks, and
then add more stocks when that simpler problem is solved.

6. Compare with a naive way of investing: What is the expected utility if dividing
money equally in the stocks?

7. Remember the first task of the laboration. Discuss how the result from that part
influences the optimal portfolio. Could one do it in another way?


