Chapter 3

Resampling Methods

3.1 Bias and variance for point estimators

Let Xi,...,X, be a sample from an unknown distribution function F(z) = P{X
z}. We estimate a parameter § = 6(F), for that distribution, with an estimator 6
6(X1,...,X,), that is a function of the available information Xi,..., X,,.

The functional relation (F), describing how 6 depends on F', can be known or
unknown. In any case, the value of 6 is unknown, since F' is not known.

It is important to know if the estimator 6 is unbiased, i.e., if

Il IA

E{0} = E{0(X1,...,X,)} = 0.
If that is not the case, it is of interest to know the magnitud of the bias
Bias(f) = E{0 — 0} = E{6(X1,...,X,)} — 0.
If the bias is small, compared to the variance of the estimator, then that variance

Var{6(X1,...,X,)} = E {(é - E{é})2} ~ E{(0 —)%},

measures the mean-square deviation of the estimator 6 from the real value of 6.

Example 3.1. For estimation of the expected value y = E{X} of a random

variable X, the sample mean of n independent observations X7,..., X, of X,
_ 1 &
p=pX1,. . X)) =X =—3 X,
i=1

is unbiased. Further, the variance of the estimator is

Var{X}

Var{ji} = Var{i(X1,..., Xn)} = ——

That variance, in turn, can be estimated using the sample variance, as

— ar{X} 2 _
Var{i} = _VaiX} _ X _ l(LSy —X)Z).

n n\n-—1

23

24 CHAPTER 3. RESAMPLING METHODS

Based on the intuition from Example 3.1, basic courses in statistics tend to commu-
nicate the impression that bias and variance for estimators are quantities that can be
studied analytically, and calculated or estimated numerically, in some generality.

However, the situation is in fact much the other way around: For most estimators,
except the one in Example 3.1, bias and variance cannot be studied analytically, at least
not for moderate sample sizes. (Often there is asymptotic theory that is useful for large
sample sizes.)

For very large samples, the method described in the following example may be useful:

Example 3.2. The variance of 9(X1, ..., Xy,) can be estimated as the sample
variance of {é(X{Z), - ,Xg)) N |, where {(X{l), ... ,Xy(f)) ;= are N independent

samples of X. Notice that this requires n X N observations of X, rather than n
only.

The great number of observations required for the method in Example 3.2 often
makes it impossible to use in practice.

With resampling methods one can, from one single sample X1, ..., X,, of X, estimate
bias and variance for an estimator 9(X1, ..., Xpn). The idea is to create new samples

{(X {i), ... ,X'ﬁf)) N . using the original sample X1,..., X,,. The following sections ex-

i:l’
plain two resampling schemes - the bootstrap method and the jack-knife method.

3.2 The empirical distribution

3.2.1 Change of distribution

If o : R* — R is a function, and Y an R"-valued random variable with distribution
function

Fy(y) =Fy(W,--»yn) =P{Y1 <y1,..., Yo <yn} for y=(y1,...,yn) €R",

then ¢(Y') has expected value

E{p(Y)} = - o(y) dFy(y)Z/ER ©(Y)01 ... OnFy (y1,...,yn) dy1 ... dyn = Br, {0}
yeR? yeR?

The notation Eg{¢} makes sense for any distribution function G on R", in the
following way:

Ec{p} = /R wdG = E{p(Z)} for Z a random variable with distribution function G.

It is simple to generalize this. For example,

Varg{p} = Balo’} — (Bolp})? = /R PG - ([de)Q.

Yy =1,...,Y,) is a sample, that is, if Y7,...,Y,, are independent with common
distribution function F'(y) = P{Y; < y}, then

Fy(i,ooooyn) =P{Y1 <uy1,.... Yo <yn}=F(y1) - ... F(yn) = F"(y).

3.2. THE EMPIRICAL DISTRIBUTION 25

Example 3.3. If X1,..., X, is a sample of an R-valued random variable X with
distribution F', then

Epn{p} = B{p(X1,...,Xn)} = Er{p}.

Notice that the n is usually left out of the notation, which thus simplifies to
Er{¢}.

3.2.2 The empirical distribution

Let Xi,...,X, be a sample of a random variable X with distribution function F(z) =
P{X <z}, and let X(;) <... < X(; be the corresponding ordered sample.

Definition 3.1. With # denoting the number of members of a set, the empirical dis-
tribution function F' is given by

0 if z€ (—OO,X(l)),
z/n if .’L‘E[X(Z),X(z+1)) for z'e{l,...,n—l},
1 if z¢€ [X(n),oo)

ﬁ(x)zwz

Figure 3.1 below displays what an empirical distribution function might look like.

Figure 3.1. An empirical distribution function for n = 10 data.

F(x)
1.0 | -—
41 ———— o
- *——o0
-+ e—— 0
-+ —o
05 Lo 5
———10
———o -+
—o0 41
——o0 -+ X

The following simple theorem indicates how empirical distributions can be simulated:

Theorem 3.1. If n is a discrete random variable with possible values {1,...,n},
with equal probabilities 1 /n, then the random variable X, has the empirical dis-
tribution function F.

Moreover, we have the following basic result, on approximating F with F:

Theorem 3.2. P { lim |F(z) — F(z)| = 0} =1 forz €R.

n—oo

26 CHAPTER 3. RESAMPLING METHODS

Proof. Let Y; = 1if X; <z and Y; = 0if X; > x. Then Y7,Y5,... are independent
identically distributed random varibles, with expected value E{Y;} = P{X; < z} =
F(z). Using that) ;" | Y;/n = F(z), the law of large numbers therefore shows that

n—oo n—0o0

P { lim |F(z) - F(z) :0} :P{ lim %En:Yi—E{Yl}‘ :0} -1. O

The following quite famous result gives a stronger version of Theorem 3.2:

Theorem 3.3 (Glivenko-Cantelli). P{ lim max|F(z) — F(z)| = O} =1

n—oc reR

The following rather important formula is quite easy to prove, using that F is
increasing and F' a pure-jump function:

. i1
Theorem 3.4. max |F(z)—F(z)| = max max{‘z —F(X(Z-))‘,
z€R n

1<i<n g _F(X(i))‘}'

n

3.3 The bootstrap method

3.3.1 Estimating variance and bias with the bootstrap method

The basic idea in the bootstrap method, is to estimate

Varp{f} = Varp. {0} = Var{f(Xy,..., X,)}

with

Varp{0} = Var;{0} = Var{0(X4,...,X,)} = Vargoor{6},
where Xi,...,X, denotes a sample of the empirical distribution F calculated from
Xi,..., X,

Since F' is known, one can in principle compute the variance
A L . \2
Vargoor{f} =/ 62d(F™) — (/ 0d(F”)>)
Rn n

However, usually this variance is estimated by the Monte-Carlo method: If {(X' fi), cee,
Xy(f))}ilil are N independent samples of the empirical distribution F, one estimates
V@()T{é} = the sample varians of {é(f(y), XN
Recall that it is simple to simulate the sample {(X'l(i), ... ,X}(f)) N |, using Theo-
rem 3.1. Also, notice that, regardless if Vargoor{6} is calculated exactly or by Monte

Carlo simulation, bootstrap is a question of assigning a uniform distribution on the
sample X1,...,X,,, so that the observations are picked with equal probabilities when

3.3. THE BOOTSTRAP METHOD 27

sampling the empirical distribution, and then making use of that distribution: This is
resampling!
In the same manner, one can use bootstrap to estimate the bias

Bias(6) = B{6(X1,..., X,)} — 6(F) = Eps{0} — 0(F) = Bp{0} — 0(F)

with

Bias(d) = Ez{0} — 0(F) = Biasgoor ().

Here E F{é} can in principle be calculated, as

E;{0} = . Od(F™).

Again, it is usually instead estimated with the Monte-Carlo method, as

—

Eﬁ{é} = the sample mean of {é()”(@, L XN

where {(X fi), .- ,X}(Li))}i]\;l are N independent samples of the empirical distribution F.
Notice that computation of @(F) requires knowledge of the functional relation § =
O(F'). This makes the bootstrap method less generally useful to estimate bias than to

estimate variance.
a — =

If Bias(#) has been estimated by Bias(f), that in turn was found to be significantly
different from zero, compared with the standard deviation of the estimator, then the

o —

estimator § can be bias corrected, by modifying it to § — Bias().

3.3.2 Confidence intervals with the bootstrap method

The standard method to make confidence intervals, is to use the following normal dis-
tribution approximation:

P{é — M2V Var{f}/n <0 <0+)\p/Q\/Var{é}/n} ~1—p. (3.1)

Here Var{é} is some estimate of Var{é}, for example by bootstrap, while A\, /5 is a
normal distribution guantile, given by

P {IN(0,1)] > X0} =2(1 = ®(Xy)0)) = p-

There are several ways to justify the formula (3.1), of which the most common is
asymptotic maximum likelihood theory: You have to consult your favorite course in
statistics for more on this.

However, there are also many situations when (3.1) does not hold, or at least cannot
be proven to hold.

28 CHAPTER 3. RESAMPLING METHODS

Example 3.4. Let X1,...,X, be a sample of a random variable X with density

function)
= f € R
O = e T

In other words, X has a Student ¢#(2) distribution, that has been relocated to be
centered at 4 € R, with expected value E{X} = p.

As usual, the sample mean i = X is an unbiased estimator of u. However, the
variance of that estimator is infinite, because the variance of X is infinite. Thus
the formula (3.1) is not applicable. Still, /i is a sensible estimator of y, since it is
consistent, by the law of large numbers. Thus some other method than (3.1), to
find confidence intervals, is required.

One attractive and simple, as well as generally applicable method, to make confi-
dence intervals, is to use resampling in the following way: The unknown parameter 0(F)
is approximated by the estimator 9(X 1y--+,Xp), which in turn is approxnnated by boot-
strap resampling, by 0(X1,...,Xp,). Therefore a confidence interval for (X1, ..., X,),
with confidence level 1 — p, say, should be a good approximate confidence 1nterval for
0, on the level 1 —p

In practice, making use of the Monte Carlo method as before, we get a boot-
strap confidence interval [a,b] for §, by simulating observations {OA(XY), X (i)) N,
of 9(X1, ..., Xn), and then chosmg the interval limits ¢ and b so that a fraction p of the
observations {f(X (), .)}fv , fall outside [a, b].

3.4 The jack-knife method

In the bootstrap mathod, F is approximated by the empirical distribution F. But there
are other distributions than F, built on X1, ..., X, which can be used to approximate
F. In such a way, the jack-knife method is obtained. We will here only describe the
method, but not offer any motivation for it.

Let) be the estimator of 6 based on the sample X7, ... s Xie1, Xig1se oy Xny

00 (Xy,...,Xn) =0(X1,...,Xi—1, Xit1, ..., Xn)

fori=1,...,n, and 60) the sample mean of 61, ... 6"
n
_1 300,
[t

In the jack-knife method, Varp{0} is estimated by

n

~ n—1 aps ~
VarJACK{H} = Z(Q(Z) _ 9())2’

n
i=1

while Bias(f) is estimated by
Biasjack(0) = (n — 1)(6) - 4).

Notice that jack-knife estimation of bias does not require knowledge of the functional
relation 6 = 6(F).

3.5. ST ANDR 29

3.5 ST and R

S and R are program languages for general statistic data treatment, including simula-
tion. St is a development of S with macro commands written in S. Usually, it is S*
that is implemented on computer systems. ST is one of the most versatile statistical
program packages available. It combines powerful traditional statistics, that challenge
the “colosses” of the market, such as, for example, SAS and SPSS, with a general pro-
graming function, for example, for stochastic simulations, that is superior to those of
SAS and SPSS.

ST has a strong position at universites, but a relatively small commercial usage.
The main reason for this is that ST is a very slow program, in terms of usage of
computer time. (However, it often saves a lot of time for the computer programmer,
when compared with faster programs!)

R is a freeware software which is close to identical to S™.

Whenever we encouter important differences between R and S, we will comment
on them.

St is started with

dali> Splus

s-PLUS : Copyright (c) 1988, 2001 Insightful Corp.

S : Copyright Lucent Technologies, Inc.

Version 6.0.4 Release 1 for Sun SPARC, Sun0OS 5.6 : 2001

Working data are in /users/mdstud/stada/lab_grupper/stada-?7/MySwork
>

R is started with
dali> R
ST has two kinds of basic commands; expressions which are evaluated directly

> sqrt(2)
[1] 1.414214

and the operators <- and -> to assign values

> x <- 3*%x(0.5); x
[1] 1.732051

Notice that several commands can be given on the same row, if separated by ;

> x <- log(2); exp(x) -> y; x; y; as.integer(x); as.integer(y)
[1] 0.6931472

[1] 2

(11 0

(11 2

Incomplete commands result in the prompt + in stead of >

> sin(pi/4) =
+ 2xx(-1/2)
[1] 0.5

A compiled assistance for a function is obtained via args(function)

> args(logb)

30 CHAPTER 3. RESAMPLING METHODS

function(x, base)
NULL

> logb(3, 3)

[1] 1

More thorough assistance is obtained with help(function) or ? function

> help(gamma)

Gamma Function (and its Natural Logarithm)

DESCRIPTION:

Returns the gamma function or the log of the gamma function.

To leave help, use q (for "quit”).
ST is a vector language. Functions of ST operate on vectors, which, for example,
can be created according to

> c(pi/2, pi/4) -> x; y <- c(1, 1/sqrt(2)); z <-1:15x2
> sin(x); y; sin(x)+y; cos(x)xy; z

[1] 1.0000000 0.7071068

[1] 1.0000000 0.7071068

[1] 2.0000000 0.7071068

[1] 6.123234e-17 5.000000e-01

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(Note the priorities between : and *!) More examples of vector operations are

> x <- c(rep(1l, times=5), rep(2, times=5), rep(3, times=5); x
[1]1111112222233333

>y <- x[1:5]; z <- c(x[1:4],x[10:11]); y; =z

[1] 11111

[1] 111123

> x[-7]

[1] 1 1111222233333

A vector z can be reinterpreted as a matrix y, and ST functions also works on
matrices, componentvise (!!), as the following example on multiplications of S matrices
illustrates:

> x <-c(1, 2, 3, 4, 5, 6); matrix(x, 2, 3) -> y; y**x2 -> z; y; 2z
[,11 [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6
[,11 [,2] [,3]

(1,7 1 9 25

[2,] 4 16 36

Notice that the order in which the elements from the vector x appear in the matrix y
is not what one typically would expected: This is a common source of programming
errors in S!

It is easy to refer to single elemenst in vectors and matrices:

> x[4]; y[2,2]; z[2,1]
[1] 4

3.5. ST ANDR 31

(1] 4
(1] 4

An element in an atomic vector is a number, character string or a logical value.
Recursive vectors, more oftenly called lists, have some element or elements which in
turn are vectors or matrices themselves. Lists can be created with 1ist, and one can
test whether a vector is recursive or atomic:

> vektl <- c¢(10,TRUE); vekt2 <- c(5,FALSE)

> lista <- list(vektl,vekt2)

> is.atomic(vektl); is.atomic(lista); is.recursive(lista)
11 T

[1] F

(11 T

The logical functions and and or are written in the following way:

> (1<2) & (2<1); (1<2) | (2<1)
(11 F
(11T

There are also logical equivalent versions of these logical operator, as follows:

> (1<2) & (2<1); (1<2) || (2<D)
[1] F
[11 T

When & is used, the logical value of both of the logical expressions which & are applied
to are computed. Then the logical value under & is determined. When && is used, the
logical value of the expression to the left of && is computed. If that value is false, the
value of && is set to false directly, without checking the values of the expression to the
right of &&, which thus need not even be well-defined. Only if the expression on the left
of && is true, the expression on the right is called for.

The difference between | and || is analogous to that between & and &&.

Usually, & and | are used for common logical computations, while && and || are
used, for example, in connection with conditions to stop while sloops (see below), where
occasionally only the expressions on the left of && or || is well-defined.

Elements of lists can be referred to with double bracket paranthesises:

> listal[[1]]; listal[[1]][1]
[1] 10 1
[1]1 10

Notice that TRUE has been written as 1.
Elements of lists can be given names in the following manner:

> ny <- list(nol=vektl,no2=vekt2); vekt <- ny$no2; vekt[1]; vekt[2]
[1] 5
[1] o

Many ST functions, for example, linear regression 1sfit, have a list as their output
values. Using $, one may refer to different list elements, for example, 1sfit$coef gives
the regression coefficients.

Files can be read to ST with scan. For example, a file D4-fil1.dat, with contents

32 CHAPTER 3. RESAMPLING METHODS

14
9 16 25

can be read in the following way:

> x <- scan("D4-fill.dat"); sqrt(x)
[11 1 2345

Observe that ” 7 is used around the file name!

Of course, for files which are not placed in the directory from which S* was started,
a path to the correct directory has to be specified: For example, a file D4-fil2.dat, with
contents

14
9 16

placed in the directory /users/mdstud/stada/lab_grupper/stada-??, can be read with

> y <- scan("/users/mdstud/stada/lab_grupper/stada-?7/D4-fil2.dat")
> sqrt(y)
[11 1 23 4

The function punif (x,min,max) gives the distribution function for a uniform dis-
tribution over the interval [min,max], and qunif(x,min,max) its invers. Further,
runif (n,min,max) generates n independent observations of such a random variable.

> punif(0.7,0,1); qunif(0.7,0,2); runif(5,1,2)
[1] 0.7
[1] 1-4
[1] 1-76225 1.927495 1.659281 1.727141 1.077847

In the same way, pnorm(x ,mean,sd), gnorm(x,mean,sd) and rnorm(n,mean,sd) give
a normal distribution function, its inverse, and a normal distributed random variable,
respectively.

See the S+-manual on other examples of distributions that can be obtained with
the commands p.(.), q.(.) and r.(.).

One can define ones own functions in ST, in the following way:

my.func <- function(x,y,z) sin(x)*(y**2)xexp(-z); my.func(pi/2,1,0)
[1]1 1

ST offers an array of common statistical routines (disregard eventual warnings they
tend to give you!):

> N <- rnorm(25,5,2); N

[1] 5.878507 5.722384 4.906421 6.930634 5.791734 3.180767 2.026125
[8] 7.274999 4.111786 5.673488 5.396242 2.414764 1.793812 6.724480
[15] 4.036401 4.533922 0.690289 5.12308 9.059758 8.625384 6.650143
[22] 3.799066 6.201977 2.6770640 8.795774

> mean(N); var(N); median(N)

[1] 5.120513

[1] 4.948436

[1] 5.396242

> min(N); quantile(N,0.25); quantile(N,0.5); quantile(N,0.75); max(N)
[1] 0.690289

3.5. St ANDR 33

257% 3.799066
50% 5.396242
75% 6.650144
[1] 9.059758

It is easy to write your own programs in S*:

> x<-NULL; for (i in 1:10) {n<-1; while (n<i) {
+ n<-n+1l; fac<-fac#n}; x<-c(x,fac)}; x
[1] 1 2 6 24 120 720 5040 40320 362880 3628800

Two of the most common programing errors in St are due to the fact that : does
not function as typically is expected:

> 1:2«5; 1:(-1)
[1] 5 10
[11 1 0 -1

Notice that the operation : has the highest priority! And that the list m:n is not empty
when m > n.
St graphics are displayed in a special graphic window. For example, two vectors
and y, of the same length, are ploted against each other with the command plot(x,y).
The empirical distribution function and histogram for N can be plotted with

plot(sort(N),1:25/25); plot(sort(N),1:25/25,type=1’"); hist(N)

Q

0.8
I

0.6

1:25/25

0.4

0.2
I

sort(N)

1:25/25
0.6 0.8 1.0
I I

0.4

0.2
I

sort(N)

34 CHAPTER 3. RESAMPLING METHODS

© -

<

N7 .

o -
[T T T T 1
0 2 4 6 8 10

N

Graphics are guided to the deafult printer with the command postscript (). This
gives the result that the plots are saved in the file ps.out.0001.ps, and then gradually
printed out. Graphics are guided back to the screen with dev.off (). First then, or
when the ST session is ended, the content of ps.out.0001.ps is printed to the printer.

When postscript () is called a second time, during a S session, graphics are saved
to ps.out.0002.ps, etc.

In R one can use the command postscript(‘‘filename.eps’’) to save to a file
filename.eps. The syntax is as follows:

> postscript("filename.eps") ; hist(N); dev.off()
One can make comments in an ST program, in the following way:
> command 1; command 2; ...; # comment

Everything on a command line that follows after # is neglected when running S.

An ST session is ended with the command q().

The primitive, so called interface, we have seen to run ST so far, is unsatisfactory
for more extensive use of the program. There are a few alternative, more sophisticated
ways to run ST

1. Start S* with the command Splus -e, instead of with Splus. Then one gets
access to a simple command editor, so that, for example, old commands can
be retrieved and edited. Unfortunately, the commands of this editor are rather
unnatural, so that the editor is less pleasant to use than it could have been.

R does not have the mentioned command editor.

2. Write the ST-program code in a file clever, say, with some editor, for example,
emacs. The run the program, in an S* session, in the following way:

> source("/users/math/mdstud/stada/lab _grupper/stada-77/clever")
Shorter programs can be copied and pasted from the editor to the ST window.

To copy and paste is of course useful in many other ways, for example, to reuse
commands that were fed earlier, completely or in part, or to save some output
results for reportwriting.

3.6. LABORATION 35

3.

Start ST in the following way: First start the editor emacs with the UNIX com-
mand emacs. In the emacs window so obtained, execute Meta-x, i.e., press the
Meta tangent (the tangent marked 4 down to the left), and then (with Meta
tangent pressed), press also the x tangent. Then write load-library, at the
bottom command row of the emacs window, followed by [Carreage Return], fol-
lowed by S-mode [Carriage Return]. Finally, execute Meta-x again, and write
S [Carreage Return], at the command row mentioned.

A more modern way to run ST now becomes available, where the functioning of
emacs and ST are integrated. This is possible because both programs are written
in the program language LISP. Notice that one uses emacs command Ctrl-x
followed by the o (for other), to move between the two windows that the emacs
window is splitted to. (Or simply use the mouse!)

The described way to run S, from emacs, does nor work for R, as of current on
the Chalmers computer system.

Example 3.4. (Continued) The central limit theorem does not apply to calculate
confidence intervals, when estimating the location parameter of a relocated Stu-
dent ¢(2) distribution with the sample mean, because the variance of the sampled
distribution is infinite. However, if using the usual formula, based on the central
limit theorem, anyway, we can check the correctnes of the interval obtained, by
means of comparing it with a bootstrap confidence interval.

Enclosed below is an ST program, that simulates a sample of size n = 1000 from
a Student #(2) distribution, and then calculates confidence intervals on the 95%
level, for the location parameter 4 = 0, based on estimating y with the sample
mean, first using the usual central limit theorem formula, giving the interval
(—0.131,0.066), which lacks theoretical support, and then using the bootstrap
method, giving the close to indentical interval (—0.135,0.070), that is supported
by bootstrap theory.

> x = rt(1000,3); c(mean(x)+gnorm(0.025)*sqrt(var(x)/1000),
+ mean (x)+gnorm(0.975) *sqrt (var(x)/1000))
[1] -0.13056517 0.06652838
> y = NULL; for (i in 1:1000) {
+ z = x[as.integer(runif(1000,1,1001))];
+y = c(y,mean(z))}
> c(quantile(y,0.025) ,quantile(y,0.975))
2.5% 97.5%
-0.1345719 0.06958057

3.6 Laboration
3.6.1 Bootstrap and jack-knife
Throughout the laboration, Xi,..., X, are observations of a random variable X with

unknown distribution function F'.

36

CHAPTER 3. RESAMPLING METHODS

1. The file boot1.dat contains the data F(X1),..., F(Xie00).- Ilustrate the conver-

gence in Theorem 3.3 by means of plotting
sup |13’(”)(a:) — F(z)| for mn=1,4,9,16,25,...,1600,

—oo<Tr<o0

where F™ s the empirical distribution based on the observations X1, ..., Xn.

For this problem, it is suitable to make use of Theorem 3.4. Also notice that
smaller data materials should be picked from F(X1),..., F(X1600) before sorting,
rather than afterwards.

. The theoretical standard deviation

o =0(F)=+/Var{X}

is estimated with the sample standard deviation

&:&HL”W&JZV 1 i@n—fﬁ

n—1;3
The task is to find the variance for this estimator, i.e.,
Var{6(X1,...,X,)} = Varp{6} = Var{6(X1,..., X,)}.

This variance cannot be calculated analytically, because we do not know the distri-
bution function F. For that reason, F' is replaced with the empirical distribution
F'. Then the variance is approximated by

Vargoor{6} = Var;{6} = Var{6(X,..., X,)},

where X:l,...,fgn is a sample of the empirical distribution function F. Here
Var{6(X1,...,X,)} is not calculated as it is either, but is estimated by the sample
variance for N observations {&(X'y), e ,X}(Li))}gil of 6(X1,...,Xy,).

In other words, N independent samples {(X' fi), ... ,X}gf)) N | should be generated
in the computer, to yield N independent observations {6(Xl(i), ... ,X}(f)) N, of
(X1,...,Xn), in order to estimate

1 1

N) o N . o 9
Vargoor{d} = Z(&(f(fz), XD (X9, ’Xv(lj))) _

N -1)_N

i—1 j=1

(The quantities that feature here can be calculated using the variance command
in St.)
The file boot2.dat contains the data X1,..., X199. Estimate

Vargoor{6} = Var{6(Xy,...,X,)} for n = 20,100,

200
=1

by means of N = 200 simulated observations {&(X'y), e ,X}(f))}
Xn) Further, calculate Varyack{d} for n=20,100.

The St-command eta <- as.integer(runif(1,1,n+1)) gives an observation
eta of a discrete random variable with uniform distribution over {1,...,n}. Notice
that the variances for n = 20 and for n = 100 should differ roughly by a factor
5. Further, the bootstrap and jack-knife methods should give roughly the same
results.

Of&(Xl,...,

3.6. LABORATION 37

3. The task is to estimate the bias Bias(6) = E{6(X1, ..., X,)} —0(X), which cannot
be calculated analytically, because we do not know F. Therefore we use the
approximation

Bias(6) = Ep{6} — o(F)
~ Biaspoor(5)
=Ep{6} —a(F)
“B{(Xs,. ., X)) — o(F),

where X1,...,X, is a sample of the empirical distribution F. Now, E{&(Xl, ey
X,)} is not calculated analytically either, but instead estimated by the sample

mean of N observations {6()2'@, e ,X}(li))}fil of 6(X1,...,Xn).

In other words, N independent observations {6()2?), . ,X}(f)) N, of 6(Xy,...,
X,) should be created, in order to estimate

N
S 4 1 =i ~ -
E{5(X1,... Xn)} = % S (XY, . XD).
=1
The term o(}?) in the expression for BiasgooT(4) is the (theoretical) standard
deviation of F'. Since this distribution is uniformly distributed over the observed
values X1,...,X,, it follows that

o(F) = \/l SS(X—E{(X})? where E{X} =~ zn:Xi _X.
Mi=1 i

This means that o(F') is the sample standard deviation of the sample X1,..., X,,
multiplied by the factor 1/(n—1)/n.

When estimating a very small or zero bias, one method can indicate a small
positive bias, and another method a small negative bias. Consequently, one does
bias corrections only when the estimated bias is reasonably big, in comparison
with the standard deviation of the estimator. Otherwise, it is satisfactory to say
that the bias is small, compared with other errors, so that a bias correction is not
motivated.

A small bias is what we expect from a good estimator, as the sample standard
deviation certainly should be of the standard deviation. However, typically it is
hard to prove this analytically. This makes the approach that we have used an
important tool for bias estimation. Also, even if analytical methods do apply, why
should such theoretical efforts be made when a quite simple computer program
does the job? Notice that even if the sample variance is an unbiased estimator of
the variance, the sample standard deviation is typically not an unbiased estimate
of the standard deviation!

Estimate Biasgoor{d} and calculate Biasyjack {5} for n = 20, 100.

4. Make a bootstrap confidence interval for o, based on N = 200 observations {&(Xfi)
Yo ,X’T(f))}i]il of 6 = 6(X1, . ,Xn) (see Section 3.3.2).

