Chapter 5

Simulation of Stochastic
Processes’

5.1 Stochastic processes

A stochastic process is a mathematical model for a random development in time:

Definition 5.1. Let T C R be a set and Q2 a sample space of outcomes. A stochastic
process with parameter space T is a function X : Q x T — R.

A stochastic process with parameter space T is a family { X (¢) };er of random vari-
ables. For each value of the parameter ¢ € T is the process value X(t) = X(w,t) a
random variable.

The parameter t is called time parameter. We distinguish between discrete time,
where usually 7= Z or T = N, and continuous time, where usually T = R or T' = RT.
(Of course, a process with continuous time need not be continuous!)

Just like the dependence of w € 2 is seldom indicated in the notation, for a random
variable ¢ = &(w), it is customary to write X (¢) instead of X (w,t), for a stochastic
process. But just as £ depends on the outcome w, and is random, so does X (t).

A plot of a stochastic process X (w,t) as a function of ¢ € T, for a fixed outcome

w € €, is called a sample path of the process: When a stochastic process is plotted, it
is a (hopefully “typical”) sample path that is depicted.

Example 5.1. A basic very important stochastic process in discrete time is dis-
crete white noise {e(t)}icz, where ...,e(—1),e(0),e(1),... are random variables
such that

E{e(t)} =0, Var{e(t)}=0> and Covie(s),e(t)} =0 for s #t.

The next example concerns a stochastic process that is sort of a counter part to the
discrete white noise that features in Example 5.1.

®For an economical ride through this chapter, omit Section 5.2-5.4 and Theorems 5.2-5.6.
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Example 5.2. Consider the process X (t) = £ for t € Z, where £ is a single
random variable. A sample path {(¢, X (¢)) € R? : ¢t € Z}, of this process is just
the horisontal sequence of equidistant points {(¢,£)) € R? : ¢t € Z}. In other
words, the process values are completely dependent of each other: If you know
one process value, you all of them!

Figure 5.1. Discrete Gaussian white noise with variance o = 1.

ety

Figure 5.2. The process in Example 5.2 with & N(0,1) distributed.

ity

If the random variables . .., e(—1),e(0),e(1), ... in Example 5.1 have the same distri-
bution as the random variable £ in Example 5.2, then the marginal distribution functions
coincide, Foy(z) = Fx(y(z) for all £ € Z. Despite of this, the processes {e(t)}1cz and
{X(t) }+ez are more or less as different as a pair of processes can be, as is illustrated by
Figures 5.1 and 5.2: The first one with completely uncorrelated process values, and the
second one with completely dependent process values.

Usually, in both theory and applications, process values X (s) and X (), at different
times s and ¢, depend more of one another than they do in Example 5.1, but less than
in Example 5.2. The analysis of stochastic processes is much about the study of that
dependence.

The analysis of the dependence structure of a stochastic process requires, in priciple,
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a complete knowledge of the finite dimensional distributions of the process, given by
FX(tl),...,X(tn)(mla - ,.’I,'n) = P{X(tl) <z,... ,X(tn) < .’En} for t1,...,t, €T,

for all n € N. However, in practice these distributions can seldom be calculated. In-
stead of an exact analyzis, one must therefore often feel satisfied with approximations.
Computer simulation of processes are often important aids, to find such approximations.

5.2 The Poisson process and other Lévy processes
Poisson processes feature already in basic course in statistics:

Definition 5.2. Let £1,&,... be independent exp(X) distributed random variables. A
Poisson process {X(t)};>0 with intensity A is given by

0 for 0<1t <&,

1 jor & <t <& +&y,
X -1 : s

n for &1+...+6 <t <&+ .+ &t &t

It is easy to simulate a Poisson process, because the definition is constructive, i.e.,
a recipy is given for how to create the process.

Example 5.3. The following Mathematica program simulates a sample path {X(
t) }1e[o,10] of a Poisson process with intensity A = 1, by mimicing Definition 5.2:

In[1]:= <<Statistics‘ContinuousDistributions®

In[2] := xi=N[Table[Random[ExponentialDistribution[1]],{i,1,50}]1];
In[3]:= stegl[t_]:=If[t>=0,1,0]

In[4]:= X[t_]:=Sum[steg[t-Sum[xi[[i]],{i,1,k}]],{k,1,50}]

In[5]:= Plot[X[t],{t,0,10},AxesLabel->{"t","X(t)"},PlotPoints—>99]

Xk}

Lévy processes are among the few most important classes of stochastic processes:
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Definition 5.3. A process {X(t)}:>0 has independent increments if, for each choice of
n€Nand <ty <t <...<t,, the random variables

X(tn) — X(n=1)y---,X(t2) = X(t1), X (t1) — X (o) are independent.
A process {X(t)}1>0 has stationary increments if, for every h >0,
X(t+ h) — X (t) =dgistrivution X (h) — X(0).
A process {X (t) }+>0 is a Lévy process if increments are independent and stationary.

In order to simulate, for example, the process values {X (%)};‘:1 of a Lévy process
(where % typically is “small”), simulate n independent random variables {(;}7; that are

distributed as X (). Then {Z;Zl ¢;}; has the same joint distribution as {X ()} ,.

Theorem 5.1. A Poisson process {X (t) }1>0 is a Lévy process with X (0) =0 and

X(t+ h) — X(t) Po(Ah) distributed for t,h > 0.

In Example 5.3, a Poisson process is simulated directly, by use of Definition 5.2.
Since Poisson processes are Lévy processes, they can also be simulated according to the
general recipy for Lévy processes, provided above.

Example 5.3. (Continued) The following Mathematica program simulates a sam-
ple path {X(¢)}c[0,109) of a Poisson process with intensity A = 1, by sampling the
process 100 times per unit of time, so that increments are Po(0.01) distributed.

In[1] := <<Statistics‘DiscreteDistributions’

In[2] := incr=N[Table[Random[PoissonDistribution[0.01]],
{i,1,1000}11;

In[3] := X=Table[Sum[incr[[i]],{i,1,k}],{k,1,1000}];

In[4] := ListPlot [X,Ticks->{{{500,"5",0.02},{1000,"10",0.02}},

Automatic},AxesLabel->{"t","X(t)"}]
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5.3 Moment functions

A stochastic process X (t) cannot be specified by its univariate marginal distribution
only, as they do not give information of the dependence structure of the process (see
Section 5.1). Moreover, although X (¢) can be specified by its finite dimensional distri-
butions, these can seldom be expressed analytically in practice, in closed form.

As a middle way, between specifying the univariate marginals only, which say to
little, and specifying the finite dimensional distributions, which usually cannot be done,
one often describe processes by their moment functions. This description is quite in-
complete, and does not determine processes uniquely, at all. However, knowledge of
moment functions is enough for many important applications as, for example, often is
the case in applications of filtering theory.

Definition 5.4. A process {X(t)}ter has expectation function myx : T — R given by
mx (1) = B{X (1)},

A process {X(t) }ter has covariance function rx : T x T — R given by rx(s,t) =
Cov{X(s),X(t)}.

The expectation function mx (t) gives information about the one-dimensional marg-
inal distributions Fx)(z) = P{X(t) < z}, t € T, of the process X(t). Notice that
mx (t) is the center of gravity of the graph of the probability density function fx ()
of X (¢).

The covariance function rx(s,t) gives information about the two-dimensional dis-
tributions Fx(5) x(1)(%,y) = P{X(s) < 7, X(t) < y}, s,t € T, of X(t). It gives a
measurement of the degree of linear dependence between the random variables X (s)
and X (t). Notice that rx(t,t) = Var{X(¢)}.

Example 5.3. (Continued) For a Poisson process X (¢) one has, by Theorem 5.1,
mx(t) = E{X(t)} = E{Po(\t)} = At.
Furthermore, rx(s,t) = Amin{s, ¢}, because independence of increments give

rx(s,t) = Cov{X(s),X(t)} = Cov{X(s), X (t) — X(s)} + Cov{X(s), X(s)}
=0+ Var{X(s)}
= Var{Po(\s)} = As for s < t.

5.4 Stationarity

In many branches of science, some characteristic of the type time invariance or steady
state is of importance. Of course, such characteristics often simplify analysis.

A stationary stochastic processes has finite dimensional distributions that are in-
variant under translations of time:

Definition 5.5. A process {X(t)}iecr is stationary if for every selection of n € N,
heR and t1,...,ty,t1 +h,...,t, + h €T, one has

(X(tl)a s aX(tn)) —distribution (X(tl + h), .. aX(tn + h))
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Example 5.1. (Continued) If the process values ..., e(—1),e(0),e(1),... for dis-
crete white noise are independent and indentically distributed, then {e(t)}sez is
a stationary process, because

P{e(t1+h) <zi,...,e(tn+h) <zp} =P{e(ti+h) <z1} X ... x P{le(tn+h) < z,}
=P{e(t1) <z} x ... x P{e(ty) <zp}
=Ple(t1) <z1,...,e(tn) <zp}.

Example 5.2. (Continued) The process X (t) = £ for t € Z, where £ is one single
random variable, is stationary, because

P{X(t1 +h) <z1,...,X(t, + h) < z,} = P{¢ < min[zy,...,z,]}
does not depend on the value of h € Z.

The following weaker form of stationarity is convenient in many applications:

Definition 5.6. A process {X(t)}1er is weakly stationary if the ezpectation and co-
variance functions

mx(t) and rx(t,t+7) do not depend on t € T.

Example 5.1. (Continued) Discrete white noise {e(t)}icz is weakly stationary,
as me(t) = E{e(t)} = 0 and
o if 7=0

re(t,t + 7) = Covie(t),e(t +7)} = { 0 if T£0

do not depend on %.

Compared with the concept of stationarity, for a weakly stationary process, invari-
ance under translation of the finite dimensional distribution

(X(t1+h)y..., X (tn + h)) =aistribution (X (t1),---, X (tn)),

has been weakened to invariance under translation of the expectation and covariance
functions

E{X(t1 +h)} =E{X(t1)} and Cov{X(t1 +h),X(t2+ h)} = Cov{X(t1), X (t2)}
(5.1)
[as mx (t) does not depend on ¢, and rx(s,t) depends only on the difference ¢ — s].
The concept of the weak stationarity only depends on finite dimensional distributions
up to the second order. Further, weak stationarity does not require these distributions
themselves to be translation invariant, but only that their expectaions and covariances
are.

Disregarding possible problem with existence of moment, we have directly from the
above discussion the following result:

Theorem 5.2. A stationary process is weakly stationary.
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For a weakly stationary process X (t), one usually writes mx instead of mx(t), for
the expectation function, and rx(r) = Cov{X(¢), X (¢t + 7)} instead of rx(¢,t + 7)
(which does not depend on t), for the covariance function.

5.5 Shot noise

Let signal packages with a certain form g¢(t) arrive with exp(A) distributed inter arrival
times to a system. Then the summarized total signal in the system is shot noise:

Definition 5.7. Let &1,&2,...,1m1,72,. .. be independent exp(A) distributed random vari-
ables and g : R — R a function satisfying ffooo |g(z)|dz < oo. The corresponding shot
noise process is defined by

00 k 9] k
X(t) = Zg(t— Z@) +Zg(t+zm> for teR
k=1 =1 k=1 =1

Since the definition of shot noise is constructive, it is straightforward to simulate.
An alternative way to describe shot noise, is by the relation

X(t) = /_oo g(t —s)dY (s) + /_oo g(t + s)dZ(s),

where {Y(s)}s>0 and {Z(s)}s>0 are independent Poisson processes with intensities A.
Using this description, it is straightforward to prove the following result:

Theorem 5.3. A shot noise process {X (t)}er is weakly stationary with expec-
tation and covariance functions

o0

mx — /\/oo g(s)ds and rx(r) = A/ o(s)g( + 5)da.

— 0 —00

5.6 Gaussian Processes

Argubly, Gaussian processes, or mormal processes, are the most important stochastic
processes. They are recognized by linear combination of their process values are normal
distributed random variables, or, equivalently, by that their finmite dimensional distri-
bution are multivariate normal distributed. An important consequence of this is that
outputs from linear filters with Gaussian input processes are again Gaussian.

Definition 5.8. A process {X(t)}ter is Gaussian if >, ax X (tx) is normal distribut-
ed for each choice of n €N, t1,...,t, € T and a1,...,a, € R.

The definition of a Gaussian process is not constructive, and does not give a recipy
according to which Gaussian processes can be simulated.

In order to specify a Gaussian process, it is enough to specify its expectation and
covariance functions:
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Theorem 5.4. If the process { X (t) hier is Gaussian, then the finite dimensional
distributions are determined by the expectation function mx (t) together with the
covariance function rx(s,t).

Proof. The distribution of the Gaussian vector (X (t1),...,X(¢,)) is determined by its
characteristic function

¢X(t1),...,X(tn)(Sla ey Sn) — E{ei(s1X(t1)+...+5nX(tn))}’

which in turn coincides with the characteristic function of the random variable s1 X (¢1)+
...+ 8, X (ty), calculated in the point 1,

Doy X (1)t s X (1) (1) = Efel X Ftrsn X i)y

Now, according to Definition 5.8, Y7 ; s;X (¢;) is normal distributed, and thus deter-
mined by the expectation and variance

B{SLsX()}) = YaB(X@)} = 3 smx()
-1 -1 O
Var{Z:?:1 siX(ti)} = kgl gl skseCov{X (tx), X (to)} = kzzjl e:zjl Skserx (t, te)

Gaussian random variables are independent if and only if they are uncorrelated:

Theorem 5.5. The components of a Gaussian random vector are independent if
and only if they are uncorrelated.

Proof. The implication to the right is elementary. For the other implication, notice
that dependent Gaussian random variables cannot be uncorrelation, because then they
have the same correlations as independent Gaussian random variables, and thus have
the same finite dimensional distributions, by Theorem 5.4, which would make them
independent. O

Theorem 5.6. A Gaussian process is stationary if and only if it is weakly sta-
tionary.

Proof. The implication to the right follows from Theorem 5.2. On the other hand, by
Theorem 5.4, X (t) is stationary, i.e., the process {X(¢ + h)}tcr has the same finite
dimensional distributions as {X(¢)}er, for every h, if X(t + h) and has the same
expectation and covariance function as do X (¢). That this holds, in turn, follows from
weak stationarity, according to (5.1). d

Not every function r(s,t) is a covariance function, in the same way as not every
matrix is a covariance matrix. However, we know from Example 5.3 that the function
r(s,t) = min(s, t) is really a covariance function.
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Definition 5.9. A Gaussian process {W(t)}ier is a (standard) Wiener process if it
has expectation and covariance functions given by

min(|s|, [¢t]) for 5,t<0,
mw(t) =0 and rw(s,t)= 0 for min{s,t} < 0 < max{s,t},
min(s,t)  for 0 <s,t.

The Wiener process is a Lévy process:

Theorem 5.7. A Wiener process {W (t) }+cr is a Lévy process with W(0) =0 and

W(t+ h) —W(t) N(O,h) distributed for t € R and h > 0.

Proof. To show that the increments of W (t) are independent, by Theorem 5.5, it is
enough to show that they are uncorrelated. This in turn follows, because

Cov{W (t;) — W(ti-1), W(t;) — W(tj-1)}
= min{t;,t;} — min{¢;,t;_1} — min{¢; 1, ¢;} + min{t;_1,¢;1}
=1t —t; —ti—1 + i1
=0

for 0 <t;—1 <t; <tj_1 <t;. The case when some of the times t;,_; < t; <t;_1 < t; are
negative is similarly dealt with. Furthermore, W (t + h) — W (¢) is N (0, h) distributed,
since E{W (¢t + h) — W (t)} =0, and

Var{W(t+ h) — W(t)} = Var{W (t + h)} — 2Cov{W (t + h), W (t)} + Var{W (¢)}
=t+h—2t+t
=h for t>0,

where the case when ¢ < 0 is similarly dealt with. Finally, we have W (0) = 0 since
E{W(0)} = mw(0) =0 and Var{W (0)} = ri(0,0) = 0. O

Example 5.2. The following Mathematica program simulates a sample path {
W(t)}te[o,l] for a standard Wiener process, by sampling the process 1000 times
per unit of time, so that increments are N(0.001) distributed.

In[1]:= <<Statistics‘ContinuousDistributions®

In[2] := W=Table[Random[NormalDistribution[0,Sqrt[0.001]1]],
{i,1,1000}]

In[3]:= WProc=Table[Sum[W[[il],{i,1,j}]1,{j,1,1000}]

In[4] := ListPlot[WProc,AxesLabel->{"t","W(t)"},PlotJoined

—>True,PlotRange->{-1.3,1.3},Ticks—>{{{1000,"1.0"}},
{{-1.0,"-1.0"},{-0.5,},{0.5,},{1.0,"1.0"}}}]
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5.7 Simulation of stationary Gaussian processes

Let {W (t)}tcr be a Wiener-process and f : R — R a function such that [%_ f(s)%ds <
0o. It is not too hard to show that the following stochastic integral is well defined.

| seaws = tim > f( )(w(55) -w (D).

k=—s(n

Here the summation limits £s(n) should satisfy lim,_, s(n)/n = co.

Theorem 5.8. The stochastic process
o0
= / ft+s)dW(s) for teR
—00
is Gaussian and stationary, with expectation and covariance functions

mx(t) =0 and rx(r / F(8)f (T + s)ds

Proof. Since X (t) is a (limit of) linear combinations of normal distributed variables,
X(t) is normal distributed, by Definition 5.8. In the same fashion, it is seen that
linear combinations of values of X () are normal distributed. Hence X (¢) is a Gaussian
process.

Since the Wiener process has zero expectation, it is quite obvious that mx (t) = 0.

Using that

cou{ (M) —w (3w (S5 w (D} - {0 L
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it follows that the also the covariance function is as claimed

rx(t,t+7)
+1 e +1
cond 32 D)), 3 s D) ()}
s(n) 1
:k:§n>f<t+§>f(t+”§)ﬁ

—>/°° f(t-l—s)f(t-l—T-l—s)ds:/oo F5)F(r + 8)ds.

Thus X (t) is weakly stationary, and therefore also stationary, according to Theorem
5.6. O

To simulate a zero-mean stationary Gaussian process X (t), with covariance function
r(7), first pick a sufficiently large n and s(n). Then approximate X (¢) by

> S D)D) - ()

k=—s(n

where the function f is given by

0= V0 =5 [ \// wrdr ey,

This is so, because then the covariance function (f * f(— f f(8)f(r+ s)ds of
the resulting Gaussian process (see Theorem 5.8) gets the rlght Fourler transform

(F(f * FENW) = ((FHW)P = (VFr)@))* = (Fr) ).

5.8 Laboration

1. Let {X(¢)}+cr be a shot noise process with A = 1 and

0 for t<0
gt)y=< 1 for OStS%
0 for %<t

The process X (t) can be thought of as modelling the number of vehicles on a
bridge at time ¢, when inter arrival times for vehicles are exp(1) distributed, and
it takes vehicles % a unit of time to pass the bridge.

a) Simulate a sample path of {X(t)}ico,10) and show the result in a plot.
b) For the probability p = P{maxc[o,1] X ( ) > 3} we have

1 lf maxte[o,lo] X(t) > 3,

p=E{C} where (= { 0 if maxyep 10 X () < 3.
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Make a confidence interval on the 99% level for p based on 10000 simulations of
the random variable (.

It can be of considerable help to notice that, writing

M= {_(n1+---+771(2)a---a_(771 +772),—711,§1,€1 +§2,---7£1+---+£K1}a (5'2)

with the numbers K7 and K5 given below, we have

00 k 00 k
X(t) :Zg(t—ZQ) —I—Zg(t—l—Zm) >3 for some ¢ € [0, 10],
— =1 k=1

k=1 =1

if and only if there exist numbers mi, mg, m3 € M such that

. (5.3)

N =

1
—§§m1<m2<m3§10 and m3z3—m; <

Because of the form of the function g(t), to simulate {X(¢)}c[0,10), we need to
consider &1,...,¢k,, where K is the largest integer such that &; + ...+ &k, < 10.
In the same way, we need to consider 71, ...,nk,, where K is the largest number
such that n; + ... + K, < 0.5 (often Ky = 0). We can then compute

K k K3 k
X(t)ng(t—ij)+Zg(t+an) for t € [0, 10]. (5.4)
k=1 j=1 k=1 j=1

To complete Task 1 a, we do the following;:

1) Simulate the exp(1) disributed random variables &1, ..., &k, M1, - -, K, -
2) Calculate X (t) from equation (5.4).

3) Plot X(¢).

In Task 1 b a loop is used, that do the following n = 10000 times (select a smaller
n when the program is tested):

1) As above.

2) Check if the condition (5.3) holds for some choice of m1, mg, m3 in the set M
given by (5.2). If this is the case, then max;c[g 19 X () > 3, so that ¢ = 1, while
otherwise, this is not the case, so that { = 0.

The following ST-program might be useful:

translvekt <- null; xisum <- -log(runif); etasum <- log(runif)
while (xisum<=10) {translvekt<-c(translvekt,xisum);
xisum <- xisum - log(runif)}
while (etasum>=-0.5) {translvekt <- c(etasum,translvekt);
etasum <- etasum + log(runif)}
X <- function(translvekt,t){n <- length(translvekt); X <- O;
for (i in 1:n) {X <- X + g(t-translvekt[n])};
X}
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2. Consider the stationary Gaussian process
o
X(t) = / F(t+5)dW(s) for t€R
—0oQ

where {W(s)}ser is a Wiener process and

1—t2 for |t|<1
ft) = :
0 for |t >1

Simulate a sample path of {X(t)}icpo,10) and show the result with a plot.
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