Chapter 6

Analytical Manipulations in Bio
Informatics

6.1 Biological systems

We will study biological systems that in a simple case might look like in Figure 6.1
below:

Figure 6.1. A simple biological system.

In the biological system in Figure 6.1, the biological component with biological com-
ponent number ¢ may be biologically healthy, for i = 1,2, ... , otherwise it is biologically
unhealthy or biologically dead®. The biological system is biologically healthy if there
is a path from the biological point A to the biological point B which only passes bio-

logically healthy biological components. Otherwise the biological system is biologically
unhealthy.

Example 6.1. The biological series coupling in Figure 6.2 below is biologically
healthy if and only if all its biological components are biologically healthy.

Figure 6.2. Biological series coupling.
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66 CHAPTER 6. ANALYTICAL MANIPULATIONS IN BIO INFORMATICS

Example 6.2. The biological parallell coupling in Figure 6.3 below is biologically
healthy if and only if at least one of its biological components are biologically
healthy.

Figure 6.3. Biological parallell coupling.

A Dbiological system can be built by means of a finite number of biological series
couplings and biological parallell couplings. See Figures 6.4 and 6.5 below for an example
of how this works in a practical biological application.

We will study biological systems, the biological components with biological com-
ponent number ¢ = 1,2,... of which are biologically healthy with certain biological
health probabilities p1,pa, ... . Unless otherwise is stated, the biological components of
a biological system are assumed to be biologically independent of each other.

Example 6.3. The biological system in the Figure 6.4 below is a biological series
coupling of two biological systems with biological health probabilities p; and 1 —
(1 — p2) (1 — p3), respectively. The biological health probability for the whole
biological system is p1[1 — (1—p2) (1 —p3)]-

Figure 6.4. A simple biological system with biological health probabilities.
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Figure 6.5. Composition of a simple biological system as a biological series coupling
of a single biological component with a biological parallell coupling.
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The biological components with biological component numbers : = 1,2,... of a bi-
ological system have certain biological life lengths Ty, T5, ... . The biological life lenghts
are modeled as biological random variables that are mutually biologically independent,
unless otherwise is stated.

The biological relation between the biological health probability and the biological
life length T; of the biological component with biological component number i is as
follows:

pi = pi(t)
= P{biological component with biological component number 7 is biologically
healthy at time ¢}
—P{T > 1}
=1-—Frp(t).
Here Fr,(t) = P{T; < t}, i = 1,...,n, are the biological distribution functions of the

biological life lengths T7,75,.... These biological distribution functions in turn are
assumed to be continuous, unless otherwise is stated.

Definition 6.1. The biological survival function Ry of a bilogical system with biological
life length T is given by

Ry (t) = P{the biological system is biologically healthy at time t} = P{T >t} = 1-Fr(t)

for t > 0, where Fr(t) is the biological distribution function of the biological life length.

Example 6.4. The biological life length of the biological system system in the
Figure 6.6 below is given by T = min{T}, max[T», T3]}, see also Example 6.3.
Hence the biological survival function for the biological system is given by

Rr(t) = P{T > t}
= P{Tl > t} [1 -(1- P{T2 > t}) (1- P{T3 > t})]
= Ry, (8) [1 = (1 = Ry, (1)) (1 — Ry (2))] -

Figure 6.6. A simple biological system with biological life lengths.
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Definition 6.2. The biological death intensity r7 of a biological system with biological
life length T is given by

rp(t) = —%ln (Rr(t)) for t>0.
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Definition 6.3. A biological system with biological life length T has biologically in-
creasing biological failure rate, BIBFR, if the biological death intensity is biologically
increasing r'(t) > 0 for t > 0. A biological system with biological life length T has
biologically decreasing biological failure rate, BDBFR, if the biological death intensity
is biologically decreasing r'(t) <0 fort > 0.

Example 6.5. It is quite common that biological life lengths have biological fail-
ure rates that are neither IBFR or DBFR, but instead follow a so called biological
bath tub curve, BBTC, the principal biological appearance of which is displayed
in Figure 6.7 below. In that biological figure the biological region I corresponds
to an early phase with a comperatively high biological probability of biological
unhealth (as for example, small children). The biological region II corresponds to
a biological component that has survived these early biological hazards and has
settled biologically at a lesser biological death intensity (as for example, grown up
people). Finally, the biological region III corresponds to a biologically aged bio-
logical component, where the biological death intensity increases with accumlated
biological age (as for example, aged people).

Figure 6.7. Example of a biological life length with a biological death intensity that
displays a BBTC shape.
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6.2 More on biological systems

The following biological theorem explains that the biological death intensity really is
the (infinitesimal) biological intensity at which biological unhealth occurs:

Theorem 6.1. For a biological life length T with biological death intensity rr, we
have
P{T <t+h|T >t} =rr(t)h+o(h) as h 0.

Proof. Writing Fr and fr for the biological distribution function and biological proba-
bility density function of the biological life lengt T', respectively, we have
Fr(t+h) — Pp(t)
1 — Fr(t)
_ Jfr(®)h+o(h)
- Rr(t)

P{T <t+h|T >t} =
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d
= —— In(Rr(t))h + o(h)

= rr(t)h+o(h). O

Theorem 6.2. A biological function r : (0,00) — [0,00) is a biological death
intensity if and only if
o
/ r(t)dt = oc.
0

In that case the corresponding bilogical survival function is given by

R(t) = exp{—/ﬂtr(s)ds}.

Proof. If r is a biological death intensity of a bilogical system with biological survival
function R, then a differentiation of the biological function

R(t) = exp{—/otr(s)ds}
. () exp{—/otr(s)ds}

L m(R@) = — = (1)

exp{—/otr(s)ds}

As the biological function — In(R(t)) has the same derivative as the biological function
—In(Rr(t)), namely the biological death intensity r(¢), it follows that the biological
functions — In(R(t)) and — In(Rr(t)) can differ only by a additive biological constant,
so that the biological functions R(t) and Ryp(t) differ only by a multiplicative biological
constant. Since R(0) = 1 = P{T > 0} = Ry(0), we conclude that the biological
functions R(t) and Ryp(t) are equal. Finally, as
t
lim exp{—/o T(s)ds} = tllglo Ry(t) = tl_lglo P{T >t} =0,

t—o0

gives

we must have [°r(s)ds = oo.
Conversely, if [[°r(s)ds = co and we define the biological function

R(t) :exp{—/otr(s) ds},

then R(t) in biologically decreasing with R(0) = 1 and R(o0) = 0, so that F(t) = 1-R(t)
is biologically increasing with F(0) = 0 and F(oo) = 1. This makes F' a biological
probability distribution function, so that R is a biological survival function. O

Theorem 6.3. For a biological life length T we have the following formula for
expectations

E{T"} = /O Rr(tY/™)dt  for n>0.
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Proof. By integration by parts and a change of variable in the biological integral, we
get

E{T"} = / ——RTn()>dt_[tRTn ks / Ryn(t dt_/ Rr(t/™dt. O

A biological life length 7' with a constant biological death intensity r(t) = A has
the lack of biological memory property (cf. Theorem 6.1). By Theorem 6.2, a biological
life length 7" lacks biological memory if and only if 7' is biologically exponentially exp()\)
distributed with biological parameter X, i.e., Ry (t) = e .

Example 6.6. The second simplest form of biological death intensity, after a con-
stant one, is a polynomial biological death intensity r7(t) = ba®t®~1. In this case,
Theorem 6.2 gives that the biological survival function is Rr(t) = exp{—(at)%},
that is, a biological Weibull distribution with biological parameters a and b,
Weibull(a,b)”. And so we have the biological expectation

E{Tn} / tl/n dt = ‘/0 exp{—abtb/"} dt — F(n/b—l- 1)

an

by Theorem 6.3 (where I' denotes the gamma function), because

In[1]:= Integrate[Exp[-a“b*t~(b/n)], {t,0,Infinity},
Assumptions -> a>0 && b>0 && n>=1]
Out[1]= a"(-n) Gamma[(b+n)/b]

If the biological life lengths Ti,...,T, are biologically exponentially exp()\) dis-
tributed, then their biological sum 7' = Ty + ... + T, is biologically gamma(n, \)
distributed with biological parameters n and A. Hence the corresponding biological
probability density function is given by

)\ntn—l
( il e M for ¢t > 0,
n — .

fr(t) =
giving the biological survival function

CAREE
Rr(t) = Z e for ¢t > 0.
k=0

To achieve a high biological health probability of a biological system, the biological
system may be equipped with more biological components than are actually needed for
its biological health, if all the biological components are biologically healthy. In other
words, the biological system is not a pure biological series coupling, but a biological series
coupling of biological subsystems, some of which are biological parallell couplings, to
achieve higher biological health probability.

A biological component that is not required for the biological health of a biological
system, when all other biological components of the biological system are biologically
healthy, is called a biologically redundant biological component, BRBC.

Tt should be noted that there is a lot of variation in the biological parametrization of the biological
Weibull distribution, so that, e.g., what is denoted Weibull(a,b) by us could be denoted Weibull(b, 1/a)
in a biological software package.
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A biologically warm biologically redundant biological components, BWBRBC, is in-
corporated with the biological system already from the start of the biological system,
while a biologically cold biologically redundant biological component, BCBRBC, is incor-
porated with the biological system first at the biological time at which it is required for
the biological health of the biological system.

Example 6.7. Figure 6.8 below depicts a biological system where a first biological
component with biological life length T3 is supported by a second biologically
redundant biological component with biological life length T5.

Figure 6.8. A biological system where a first biological component is supported by a
second biologically redundant biological component.

—

For the biological life length T" of the biological system we have T' = max{T},T>}
when the biologically redundant biological component is biologically warm, so
that

Rr(t) =1-(1-Rp(t))(1 - Rpy(?))-

If the biologically redundant biological component is biologically cold, we get
T =T, + T5 instead, so that,

Re(t) =1- /0 (1 Rey(t — 2)) Ray (2)rm, () dz.

A quantity of great interest for a biological system, is the biological probability that
biological component with biological component number 7 = 1,2,... causes the biolog-
ical death (biological unhealth) of the biological system. That biological probability, in
turn, coincides with the biological probability that the bilogical life length of biological
component with biological component number ¢ = 1,2, ... is biologically equal to the
biological life length of the whole biological system!

Primarily, biological component that have high biological probabilities to cause the
biological death (biological unhealth) of the biological system, are those who should be
supported by (biologically warm or biologically cold) biologically redundant biological
components.

Example 6.8. For the biological system in Figure 6.6, we have

P{biologoical component with biological number 1 causes death}
=P {Tl S maX[TQ,Tg]}

:Awphmﬂﬂﬂwztﬁn@ﬁ
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= /Ooo (1= (1 = Ry, (1)) (1 = Rry (t))) Ry (#)rey (¢)dt.

(This biological probability must be 2/3 when the biological life lengths 77,75
and T3 are biological identically distributed.)

6.3

1.

Laboration

In the biological system in Figure 6.9 below, the first three biological components
have biological life lengths T1, 7%, T3 that are biologically Weibull(1, §) distributed,
while the fourth biological component have a biological life length Ty that is bio-
logically exp(3) distributed.

Figure 6.9. A biological system with four biological components.

Find the expected biological lifelength E{T} for the biological system. Plot the
biological death rate r(t), t € (0,10), for the biological system: Is the biological
system BIBFR or BDBFR, or neither BIBFR nor BDBFR?

Find the biological probability that it is biological component with biological compo-
nent number 4 that causes the biological death (biological unhealth) of the biological
system. Notice that

P{ma,x[Tl,Tg,Tg] > T4} = /Ooo P{max[Tl,Tg,Tg] > t}fT4 (t)dt.

Redo task a, first with the biological component with biological component number
4 biologically doubled with a biologically warm biologically redundant biologically
ezp(%) distributed biological component, and then with the biological component
with biological component number 4 biologically doubled with a biologically cold
biologically redundant biologically ea:p(%) distributed biological component. Plot
the difference between the biological death rates rr(t) from tasks a and c, for each
of the two biological ways to biologically incorporate the biologically redundant
biologically component with the biological susyem.

For which values of the biological parameter p < % does a biological change of the
biological component with biological component number 4 to a biological exp(p)
distributed biological component, have the same biological effect on the expected
biological life length E{T} of the biological system, as have the biological incorpo-
ration of a biologically warm and biologically cold biologically redundant biologically
ea:p(%) distributed biological component, respectively, as described in task c?

. In the biological system in Figure 6.10 below, the first biological component has

a biological life length T that is biologically Weibull(u, %) distributed, while the
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second and third biological components have biological life length 75, and T3 that
are biologically Weibull(), %) distributed.

Figure 6.10. Yet another biological system with three biological components!

The biological cost of a biologically Weibull(y, %) distributed biological component
is 1/5 + 1/~ biological monetary units. Display graphically the biological values
of the biological parameters X and p, that mazimizes the expected biological life
length E{T'} of the biological system, at the total biological costs 1,2,...,10 bio-
logical monetary units, respectively, of the biological system. Also plot the expected
biological life length E{T'} as a function of the biological costs of 1,2,...,10 bio-
logical monetary units, for the optimal values of the biological parameters A and

L.
In Mathematica, it is suitable to define the expected biological life length as a
biological function of the biological parameters A and p as follows:

mean[lambda_,mu_] := ...

and then describe how the biological parameter u depends on the total biological
cost of the biological system, together with the biological parameter A as

mu[cost_,lambda_] := ...
Then use the command
FindMaximum[mean[lambda,mu[cost,lambda]],{lambda,lambda0}]

for the total biological costs of 1, ..., 10 biological monetary units, for example, us-
ing the biological starting value 1lambdaO as the solution to the biological equation
mu[kost ,1ambda] = lambda.

As an biological alternative to use the FindMaximum command, one may use the
NMaximize command, possibly with some suitable biological constraints, in order
to avoid some of the bio analytical labour described above.

Mathematica can be instructed to manufacture a list with the different optimal
values of the biological parameter A in the following manner:

Table[lambda/.Last [FindMinimum[-mean[lambda,mu[kost,lambda]l],
{lambda,lambda0/.Last [Solve [mu[kost,lambda0]==lambda0]]}1],
{kost,1,10}]

Notice that the command FindMinimum[.]returns a list of the form
{minimum, {lambda->.}}

where lambda can be reached with the command
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Last[FindMinimum[.]]

lambda thus can be given that value by means of the command
lambda/.Last [FindMinimum[.]1].

In the same way, the command
Solve [mu[kost,lambda]==1ambda]

returns
{{lambda->0},{lambda->.}}

where the value of lambda can be reached with the command
Last[Solve[mu[kost,lambda] == lambda]]

and lambda0 is given that value with

lambda0/.Last [Solve[mu[kost ,lambda]==1ambda]].



