
Chapter 6

The Monte Carlo Method

6.1 The Monte Carlo method

6.1.1 Introduction

A basic problem in applied mathematics, is to be able to calculate an integral

I =

∫

f(x)dx,

that can be one-dimensional or multi-dimensional. In practice, the calculation can
seldom be done analytically, and numerical methods and approximations have to be
employed.

One simple way to calculate an integral numerically, is to replace it with an ap-
proximation, Riemann sum, leaning on the definition of the Riemann integral. For a
one-dimensional integral, over the interval [a, b], say, this means that the domain of
integration is divided into several subintervals of length ∆x, say,

a = x0 < x1 < · · · < xn−1 < xn = b where xi = xi−1 + ∆x for i = 1, . . . , n.

By Taylor expansion, the integral over an interval is given by

∫ xi−1+∆x

xi1

f(x)dx = ∆x
f(xi−1) + f(xi−1 + ∆x)

2
− (∆x)3

12
f
′′

(χ)

for some χi ∈ (xi−1, xi−1 +∆x). It follows that the integral over the whole interval [a, b]
is given by

∫ b

a
f(x)dx =

n
∑

i=1

∫ xi−1+∆x

xi−1

f(x)dx =

n
∑

i=1

∆xwif(xi) −
(b − a)3

12n2
f
′′

,

where

f
′′

=
1

n

n
∑

i=1

f
′′

(χi) and wi =











1/2 for i = 0,

1 for i = 1, . . . , n − 1,

1/2 for i = n.

Notice that the error is proportional to 1/n2, and that the function f has to calculated
n + 1 times.
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In order to calculate a d-dimensional integral, it is natural to try to extend the one-
dimensional approach. When doing so, the number of times the function f has to be
calculated increases to N = (n + 1)d ≈ nd times, and the approximation error will be
proportional to n−2 ≈ N−2/d.

Notice that a higher order methods, that use more terms of the Taylor expansion of
f , give smaller approximation errors, at the cost of also having to calculate derivatives of
f . When the dimension d is large, the above indicated extension of the one-dimensional
approach will be very time consuming for the computer.

One key advantage of the Monte Carlo method to calculate integrals numerically,
is that it has an error that is proportional to n−1/2, regardless of the dimension of the
integral.

A second important advantage with Monte Carlo integration, is that the approxi-
mation error does not depend on the smoothness of the functions that is integrated,
whereas for the above indicated method, the error increases with the size of f ′′, and the
method breaks down if f is not smooth enough.

6.1.2 Monte Carlo in probability theory

We will see how to use the Monte Carlo method to calculate integrals. However, as
probabilities and expectations can in fact be described as integrals, it is quite immediate
how the Monte Carlo method for ordinary integrals extends to probability theory.

For example, to calculate the expected value E{g(X)} of a function g of a contin-
uously distributed random variable X with probability density function f , using the
Monte Carlo integration, we notice that

E{g(X)} =

∫

g(x)f(x)dx.

This integral is then calculated with the Monte Carlo method.
To calculate the probability P{X ∈ O}, for a set O, we make similar use of the fact

that

P{X ∈ O} =

∫

IO(x)f(x)dx where IO(x) =

{

1 if x ∈ O,

0 if x /∈ O.

6.2 Monte Carlo integration

Consider the d-dimensional integral

I =

∫

f(x)dx =

∫ x1=1

x1=0
· · ·
∫ xd=1

xd=0
f(x1, . . . , xd)dx1 . . . dxd

of a function f over the unit hypercube [0, 1]d = [0, 1] × . . . × [0, 1] in Rd. Notice
that the integral can be interpreted as the expectation E{f(X)} of the random variable
f(X), where X is an Rd-valued random variable with a uniform distribution over [0, 1]d,
meaning that the components X1, . . . ,Xd are independent and identically uniformly
distributed over [0, 1], i.e., X1, . . . ,Xd are random numbers.

The Monte Carlo approximation of the integral is given by

E =
1

n

n
∑

i=1

f(xi),
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where {xi}n
i=1 are independent observations of X, i.e., independent random observations

of a Rd-valued random variable, the components of which are random numbers.
For an integral

I =

∫

[a,b]
f(x)dx =

∫ x1=b1

x1=a1

· · ·
∫ xd=bd

xd=ad

f(x1, . . . , xd)dx1 . . . dxd

over a hyperrectangle [a, b]d = [a1, b1] × . . . × [ad, bd] in Rd, the sample {xi}n
i=1 should

be independent observations of a Rd-valued random variable X that is uniformly dis-
tributed over [a, b] instead, i.e., the components X1, . . . ,Xd of X should have uniform
distributions over [a1, b1], . . . , [ad, bd], respectively.

This approximation converges, by the law of large numbers, as n → ∞, to the real
value I of the integral. The convergence is in the probabilistic sense, that there is never
a guarantee that the approximation is so and so close I, but that it becomes increasingly
unlikely that it is not, as n → ∞.

To study the error we use the Central Limit Theorem (CLT), telling us that the sam-
ple mean of a random variable with expected value µ and variance σ2, is approximately
normal N(µ, σ2/n)-distributed.

For the Monte Carlo approximation E of the integral I, the CLT gives

P

(

a
σ(f)√

n
< E − I < b

σ(f)√
n

)

= P

(

a
σ(f)√

n
<

1

n

n
∑

i=1

f(xi) − I < b
σ(f)√

n

)

≈ Φ(b)−Φ(a).

Here, making use of the Monte Carlo method again,

σ2(f) =

∫

(f(x) − I)2dx ≈ 1

n

n
∑

i=1

(f(xi) − E)2 =
1

n

n
∑

i=1

f(xi)
2 − E2 = σ̂2(f).

In particular, the above analysis shows that the error of the Monte Carlo method is
of the order n−1/2, regardless of the dimension d of the integral.

Example 6.1. Monte Carlo integration is used to calculate the integral

∫ 1

0

4

1 + x2
dx,

which thus is approximated with

E =
1

n

n
∑

i=1

4

1 + x2
i

,

where xi are random numbers. A computer program for this could look as follows:

E=0, Errorterm=0

For 1 to n

Generate a uniform distributed random variable x_i.

Calculate y=4/(1+x_i^2)

E=E+y and Errorterm=y^2+Errorterm

End

E=E/n

Error=sqrt(Errorterm/n-E^2)/sqrt(n)
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6.3 More on Monte Carlo integration

6.3.1 Variance reduction

One way to improve on the accuracy of Monte Carlo approxiamtions, is to use variance

reduction techniques, to reduce the variance of the integrand. There are a couple of
standard techniques of this kind.

It should be noted that a badly performed attempt to variance reduction, at worst
leads to a larger variance, but usually nothing worse. Therefore, there is not too much
to lose on using such techniques. And it is enough to feel reasonbly confident that the
technique employed really reduces the variance: There is no need for a formal proof of
that belief!

It should also be noted that variance reduction techniques often carry very fancy
names, but that the ideas behind always are very simple.

6.3.2 Stratified sampling

Often the variation of the function f that is to be integrated varies over different parts
of the domain of integration. In that case, it can be fruitful to use stratified sampling,
where the domain of integration is divided into smaller parts, and use Monte Carlo
integration on each of the parts, using different sample sizes for different parts.

Phrased mathematically, we patition the integration domain M = [0, 1]d into k
regions M1, . . . ,Mk. For the region Mj we use a sample of size nj of observation {xij}nj

i=1

of a random variable Xj with a uniform distribution over Mj. The resulting Monte Carlo
approximation E of the integral I becomes

E =
k
∑

j=1

vol(Mj)

nj

nj
∑

i=1

f(xij),

with the corresponding error

∆SS =

√

√

√

√

k
∑

j=1

vol(Mj)2

nj
σ2

Mj
(f),

where

σ2
Mj

(f) =

(

1

vol(Mj)

∫

Mj

f(x)2dx −
(

1

vol(Mj)

∫

Mj

f(x)dx

)2
)

.

The variances σ2
Mj

(f) of the differents parts of the partition, in turn, are again estimated
by means of Monte Carlo integration.

In order for startified sampling to perform optimal, on should try to select

nj ∼ vol(Mj)σMj
(f).

6.3.3 Importance sampling

An alternative to stratified sampling, is importance sampling, where the redistribution
of the number of sampling points is carried out by means of replacing the uniform
distribution with another distribution of sampling points.
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First notice that

I =

∫

f(x)dx =

∫

f(x)

p(x)
p(x)dx,

If we select p to be a probability density function, we may, as an alternative to ordinary
Monte Carlo integration, generate random observations x1, . . . , xn with this probability
density function, and approximate the integral I with

E =
1

n

n
∑

i=1

f(xi)

p(xi)
,

The error of this Monte Carlo approximation is σ(f/p)/
√

(n), where σ2(f/p) is esti-
mated as before, with

̂σ2(f/p) =
1

n

n
∑

i=1

(

f(xi)

p(xi)

)2

− E2,

In analogy with the selection of the diffrent sample sizes for stratified sampling, it
is optimal to try select p(x) as close in shape to f(x) as possible. (What happens if the
fucntion f to be integrated is itself a probability density function?)

6.3.4 Control variates

One simple approach to reduce variance, is try to employ a control variate g, which is
a function that is close to f , and with a known value I(g) of the integral. Writing

I =

∫

f(x)dx =

∫

(f(x) − g(x))dx +

∫

g(x)dx =

∫

(f(x) − g(x))dx + I(g),

with g close to f , the variance of f − g should be smaller than that of f , and the
integral I = I(f) is approximated by the sum E of the Monte Carlo approxiamtion of
that integral and I(g):

E =
1

n

n
∑

i=1

(f(xi) − g(xi)) + I(g).

6.3.5 Antithetic variates

Whereas ordinary Monte Carlo integration uses random samples built of independent
observations, it can be advantageous to use samples with pairs of observations that are
negatively correlated with each other. This is based on the fact

Var{f1 + f2} = Var{f1} + Var{f2} + 2Cov{f1, f2}.
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Example 6.2. Let f be a monotone function of one variable (i.e., f is either
increasing or decreasing). In order to calculate the integral

I =

∫ 1

0
f(x)dx.

using observed random numbers {xi}k
i=1, can use the Monte Carlo approximation

I ≈ E =
1

n

n
∑

i=1

f(xi)

2
+

1

n

n
∑

i=1

f(1 − xi)

2
.

This motivation of this approximation is that 1−xi is an observation of a random
number when xi is. As xi and 1−xi obviously are negatively correlated, so should
be f(xi) and f(1−xi). Thus the error of this Monte Carlo approximation should
be small.

In the above example, the random variable f(Y ) = f(1−X) has the same distribu-
tion as the random variable f(X) that is sampled for ordinary Monte Carlo integration.
In addition f(Y ) and f(X) are negatively correlated. We summarize these two prop-
erties, that can be very useful to calculate the integral of f , by saying that f(Y ) is an
antithetic variate to f(X).

6.4 Simulation of random variables

6.4.1 General theory for simulation of random variables

The following technical lemma is a key step to simulate random variables in a computer:

Lemma 6.1. For a distribution function F , define the generalized right-invers
F← by

F←(y) ≡ min{x ∈ (0, 1) : F (x) ≥ y} for y ∈ (0, 1).

We have

F←(y) ≤ x ⇔ y ≤ F (x).

Proof. 3For F (x) < y there exists an ǫ > 0 such that F (x) < y for z ∈ (−∞, x + ǫ], as
F is non-decreasing and continuous from the right. This gives

F←(y) = min{z ∈ (0, 1) : F (z) ≥ y} > x.

On the other hand, for x < F←(y) we have F (x) < y, since

F (x) ≥ y ⇒ F←(y) = min{z∈(0, 1) : F (z) ≥ y} ≤ x.

Since we have shown that F (x) < y ⇔ x < F←(y), it follows that F←(y) ≤ x ⇔
y ≤ F (x). �

3This proof is not important for the understanding of the rest of the material.
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From a random number, i.e. a random variable that is uniformly distributed over the

interval [0, 1], a random variable with any other desired distribution can be simulated,
at least in theory:

Theorem 6.1. If F is a distribution function and ξ a random number, then

F←(ξ) is a random variable with distribution function F .

Proof. Since the uniformly distributed random variable ξ has distribution function
Fξ(x) = x for x ∈ [0, 1], Lemma 6.1 shows that

FF←(ξ)(x) = P{F−1(ξ) ≤ x} = P{ξ ≤ F (x)} = Fξ(F (x)) = F (x). �

When using Theorem 6.1 in practice, it is not necessary to know an analytical
expression for F←: It is enough to know how to calculate F← numerically.

If the distribution function F has a well-defined ordinary invers F−1, then that
inverse coincides with the generalized right-inverse F← = F−1.

Corollary 6.1. Let F be a continuous distribution function. Assume that there

exists numbers −∞ ≤ a < b ≤ ∞ such that

• 0 < F (x) < 1 for x ∈ (a, b);

• F : (a, b) → (0, 1) is strictly increasing and onto.

Then the function F : (a, b) → (0, 1) is invertible with invers F−1 : (0, 1) →
(a, b). Further, if ξ is a random number, then the random variable F−1(ξ) has

distribution function F .

Corollary 6.1 might appear to be complicated, at first sight, but in practice it is
seldom more difficult to make use of it than is illustrated in the following example,
where F is invertible on (0,∞) only:

Example 6.3. The distribution function of an exp(λ)-distribution with mean 1/λ
F (x) = 1 − e−λx for x > 0 has the invers

F−1(y) = −λ−1 ln(1 − y) for y ∈ (0, 1).

Hence, if ξ is a random number, then Corollary 6.1 shows that

η = F−1(ξ) = −λ−1 ln(1 − ξ) is exp(λ)-distributed.

This give us a recepy for simulating exp(λ)-distributed random variables in a
computer.

It is easy to simulate random variables with a discrete distribution:
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Theorem 6.2 (Table Method). Let f be the probability density function for a

discrete random variable with the possible value {y1, y2, y3, . . .}. If ξ is a random

number, then the random variable

η =



















y1 if 0 > ξ ≤ f(y1)
y2 if f(y1) < ξ ≤ f(y1) + f(y2)
y3 if f(y1) + f(y2) < ξ ≤ f(y1) + f(y2) + f(y2) + f(y3)

...

is a discrete random variable with the possible value {y1, y2, y3, . . .} and probability

density function fη = f .

Proof. One sees directly that the result is true. Alternatively, the theorem can be shown
by application of Theorem 6.1. �

6.4.2 Simulation of normal distributed random variables

Normal distributed random variables can be simulated with Theorem 6.1, as the invers
for the normal distribution function can be calculated numerically. However, sometimes
it is desirable to have an alternative, more analytical algorithm, for simulation of normal
random variates:

Theorem 6.3 (Box-Müller). If ξ and η are independent random numbers, then

we have

Z ≡ µ + σ
√

−2 ln(ξ) cos(2πη) N(µ, σ2) − distributed

Proof. 4For N1 and N2, independent N(0, 1)-distributed, the two-dimensional vec-
tor (N1, N2) has radius

√

N2
1 + N2

2 that is distributed as the square-root of a χ(2)-
distribution. Moreover, it is a basic fact, that is easy to check, that a χ(2)-distribution
is the same thing as an exp(1/2)-distribution.

By symmetry, the vector (N1, N2) has argument arg(N1,N2) that is uniformly dis-
tributed over [0, 2π].

Adding things up, and using Example 6.3, it follows that, for ξ and η random
numbers,

(N1, N2) =distribution

√

−2 ln(ξ)(cos(2πη), sin(2πη)). �

6.5 Software

The computer assignment is to be done in C and in Matlab. More precisely, you have to
write the code in C and then incorporate it into Matlab with MEX. For a short example
of how it can be done, see homepage → programming → C interface in Matlab.

4This proof is not important for the understanding of the rest of the material.
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6.6 Laboration

1. It is well known that the number π can be calculated numerically as the integral

π =

∫ 1

0

4

1 + x2
dx.

• Use Monte Carlo integration to approximate the integral numerically. Do this
for several ”sample sizes” n, for example n = 100, 1000, 10000, .... Perform an
error estimate pretending that the real value of π is unknown and compare it
with the actual error calculated using the real value of π. Begin with plotting
the function f(x) = 4/(1 + x2) to get a feeling for how it behaves (do this in
Matlab).

• Pick two variance reduction techniques (whichever you want) and re-calculate
the integral by applying those. Do this for the same n values as before. Do
you get more accurate estimates? Why (why not)?

Do the above by writing a function in C that takes in one ”sample size”
n and returns the integral and the error estimates. Call then this function
from Matlab with different n values. You can write a separate function for
the variance reduction or change the original one so that it returns both the
simple estimate and the ones obtained through variance reduction.

2. (2p)

• Do a Monte Carlo calculation of the integral

∫ 1

0
B(t)dt,

where B is the quite irregular function given by

B(t) =

n
∑

k=0

√
8

π

sin(1
2 (2k + 1)πt)

2k + 1
nk for t ∈ [0, 1],

for a large n, and {nk}n
k=1 independent normal N(0, 1)-distributed. Actually,

if one lets n → ∞, B(t) becomes Brownian motion (see Chapter 5). This
function, or stochastic process rather, is known to be continuous, but not
differentaible in a single point in the interval [0, 1]!

• Improve your program in from Task 1 (the one where you calculated π) by
adding one more variance reduction technique (again, pick whichever you
like). Do you get better estimates? Why (why not)?

3. (2p)

• In many applications, it is of interest to study worst case scenarios, and the
expected shortfall E{SX(u)} is a measure that is commonly used, for that
purpose. The definition of expected shortfall is the expectation, of a suitable
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loss random variable X, given that the loss is greater than a certain threshold
u:

E{SX(u)} = E{X|X > u}.

Expected shortfalls can be difficult to calculate analyiclly, but with Monte
Carlo simulations things simplify.

Assume that an insurance company has found that the probability to have a
flood is p, and that if a flood occurs, then the loss is exponential distributed
with parameter λ. In other words, we have the loss X = Y Z, where Y is
a Bernoulli(p)-distributed random varaible, and Z is an exp(λ)-distributed
random variable with mean 1/λ, independent of Y .

Select p = 0.1, 1/λ = 3.4 and u = 10, and use Monte Carlo simulation to
estimate the expected shortfall E{SX(u)}. Give bounds on the error of the
estimation.

• Add one more variance reduction technique to the program from Task 1
(it should now have four in total). Compare those three and the original
estimate. Which one is the best? Why?


