
Chapter 5

Reliability and Survival

5.1 Systems of components

We will study systems that in a simple case might look like in Figure 5.1 below:

Figure 5.1. A simple system.
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In the system in Figure 5.1, the component with component number i may be healthy,
for i = 1, 2, . . . , otherwise it is unhealthy or dead6. The system is healthy if there is a
path from the point A to the point B which only passes healthy components. Otherwise
the system is unhealthy.

Example 5.1. The series coupling in Figure 5.2 below is healthy if and only if
all its components are healthy.

Figure 5.2. Series coupling.
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6Rest in peace.
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Example 5.2. The parallell coupling in Figure 5.3 below is healthy if and only
if at least one of its components is healthy.

Figure 5.3. parallell coupling.

B

2

1

A

n

A system can be built by means of a finite number of series couplings and parallell
couplings. See Figures 5.4 and 5.5 below for an example of how this works in a practical
application.

We will study systems the components with component number i = 1, 2, . . . of which
are healthy with certain health probabilities p1, p2, . . . . Unless otherwise is stated, the
components of a system are assumed to be independent of each other.

Example 5.3. The system in the Figure 5.4 below is a series coupling of two
systems with health probabilities p1 and 1 − (1 − p2) (1 − p3), respectively. The
health probability for the whole system is p1[1− (1−p2)(1−p3)].

Figure 5.4. A simple system with health probabilities.
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Figure 5.5. Composition of a simple system as a series coupling of a single component
with a parallell coupling.

The components with component numbers i = 1, 2, . . . of a system have certain life

lengths T1, T2, . . . . The life lengths are modeled as random variables that are mutually
independent, unless otherwise is stated.

The relation between the health probability and the life length Ti of the component
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with component number i is as follows:

pi = pi(t)

= P{component with component number i is healthy at time t}

= P{Ti > t}

= 1 − FTi
(t) = p.

Here FTi
(t) = P{Ti ≤ t}, i = 1, . . . , n, are the distribution functions of the life

lengths T1, T2, . . .. These distribution functions in turn are assumed to be continuous,
unless otherwise is stated.

Definition 5.1. The survival function RT of a system with life length T is given by

RT (t) = P{the system is healthy at time t} = P{T >t} = 1−FT (t)

for t > 0, where FT (t) is the distribution function of the life length.

Example 5.4. The life length of the system in the Figure 5.6 below is given by
T = min{T1, max[T2, T3]}, see also Example 5.3. Hence the survival function for
the system is given by

RT (t) = P{T > t}

= P{T1 > t} [1 − (1 − P{T2 > t}) (1 − P{T3 > t})]

= RT1
(t) [1 − (1 − RT2

(t))(1 − RT3
(t))] .

Figure 5.6. A simple system with life lengths.
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Definition 5.2. The death intensity rT of a system with life length T is given by

rT (t) = −
d

dt
ln (RT (t)) for t > 0.

Definition 5.3. A system with life length T has increasing failure rate, IFR, if the death

intensity is increasing r′(t) ≥ 0 for t > 0. A system with life length T has decreasing
failure rate, DFR, if the death intensity is decreasing r′(t) ≤ 0 for t > 0.
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Example 5.5. It is quite common that life lengths have failure rates that are
neither IFR or DFR, but instead follow a so called bath tub curve, BTC, the
principal appearance of which is displayed in Figure 5.7 below. In that figure
the region I corresponds to an early phase with a comperatively high probability
of unhealth (as for example, small children). The region II corresponds to a
component that has survived these early hazards and has settled at a lesser death
intensity (as for example, grown up people). Finally, the region III corresponds
to a aged component, where the death intensity increases with accumlated age
(as for example, aged people).

Figure 5.7. Example of a life length with a death intensity that displays a BTC shape.
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5.2 More on systems

The following theorem explains that the death intensity really is the (infinitesimal)
intensity at which unhealth occurs:

Theorem 5.1. For a life length T with death intensity rT , we have

P{T ≤ t + h|T > t} = rT (t)h + o(h) as h ↓ 0.

Proof. Writing FT and fT for the distribution function and probability density function
of the life length T , respectively, we have

P{T ≤ t + h|T > t} =
FT (t + h) − FT (t)

1 − FT (t)
=

fT (t)h + o(h)

RT (t)

= −
d

dt
ln(RT (t))h + o(h) = rT (t)h + o(h). �
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Theorem 5.2. A function r : (0,∞) → [0,∞) is a death intensity if and only if

∫

∞

0

r(t)dt = ∞.

In that case the corresponding survival function is given by

R(t) = exp

{

−

∫ t

0

r(s)ds

}

.

Proof. If r is a death intensity of a system with survival function RT , then a differenti-
ation of the function

R(t) = exp

{

−

∫ t

0

r(s)ds

}

gives

−
d

dt
ln(R(t)) = −

−r(t) exp

{

−

∫ t

0

r(s)ds

}

exp

{

−

∫ t

0

r(s)ds

} = r(t).

As the function − ln(R(t)) has the same derivative as the function − ln(RT (t)), namely
the death intensity r(t), it follows that the functions − ln(R(t)) and − ln(RT (t)) can
differ only by a additive constant, so that the functions R(t) and RT (t) differ only by
a multiplicative constant. Since R(0) = 1 = P{T > 0} = RT (0), we conclude that the
functions R(t) and RT (t) are equal. Finally, as

lim
t→∞

exp

{

−

∫ t

0

r(s)ds

}

= lim
t→∞

RT (t) = lim
t→∞

P{T > t} = 0,

we must have
∫

∞

0
r(s)ds = ∞.

Conversely, if
∫

∞

0
r(s)ds = ∞ and we define the function

R(t) = exp

{

−

∫ t

0

r(s) ds

}

,

then R(t) in decreasing with R(0) = 1 and R(∞) = 0, so that F (t) = 1 − R(t) is
increasing with F (0) = 0 and F (∞) = 1. This makes F a probability distribution
function, so that R is a survival function. �

Theorem 5.3. For a life length T we have the following formula for expectations

E{Tn} =

∫

∞

0

RT (t1/n) dt for n > 0.

Proof. By integration by parts and a change of variable in the integral, we get

E{Tn} =

∫

∞

0

t
(

−
d

dt
RT n(t)

)

dt = [t RT n(t)]∞
0

+

∫

∞

0

RT n(t)dt =

∫

∞

0

RT (t1/n)dt. �
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A life length T with a constant death intensity rT (t) = λ has the lack of memory

property (cf. Theorem 5.1). By Theorem 5.2, a life length T lacks memory if and only
if T is exponentially exp(λ) distributed with parameter λ, i.e., RT (t) = e−λt.

Example 5.6. The second simplest form of death intensity, after a constant one,
is a polynomial death intensity rT (t) = babtb−1. In this case, Theorem 5.2 gives
that the survival function is RT (t) = exp{−(a t)b}, that is, a Weibull distribution
with parameters a and b, Weibull(a, b)7. And so we have the expectation

E{Tn} =

∫

∞

0

RT (t1/n)dt =

∫

∞

0

exp
{

−abtb/n
}

dt =
Γ(n/b + 1)

an

by Theorem 5.3 (where Γ denotes the gamma function), because

In[1]:= Integrate[Exp[-a^b*t^(b/n)], {t,0,Infinity},
Assumptions -> a>0 && b>0 && n>=1]

Out[1]= a^(-n) Gamma[(b+n)/b]

If the life lengths T1, . . . , Tn are exponentially exp(λ) distributed, then their sum
T ≡ T1 + . . . + Tn is gamma(n, λ) distributed with parameters n and λ. Hence the
corresponding probability density function is given by

fT (t) =
λntn−1

(n − 1)!
e−λt for t > 0,

giving the survival function

RT (t) =

n−1
∑

k=0

λktk

k!
e−λt for t > 0.

To achieve a high health probability of a system, the system may be equipped with
more components than are actually needed for its health, if all the components are
healthy. In other words, the system is not a pure series coupling, but a series coupling
of subsystems, some of which are parallell couplings, to achieve higher health probability.

A component that is not required for the health of a system, when all other compo-
nents of the system are healthy, is called a redundant component, RC.

A warm redundant components, WRC, is incorporated with the system already from
the start of the system, while a cold redundant component, CRC, is incorporated with
the system first at the time at which it is required for the health of the system.

7It should be noted that there is a lot of variation in the parametrization of the Weibull distribution,
so that, e.g., what is denoted Weibull(a, b) by us could be denoted Weibull(b, 1/a) in a software package.
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Example 5.7. Figure 5.8 below depicts a system where a first component with
life length T1 is supported by a second redundant component with life length T2.

Figure 5.8. A system where a first component is supported by a second redundant
component.

T 2

1T

For the life length T of the system we have T = max{T1, T2} when the redundant
component is warm, so that

RT (t) = 1 − (1 − RT1
(t))(1 − RT2

(t)).

If the redundant component is cold, we get T = T1 + T2 instead, so that,

RT (t) = 1 −

∫ t

0

(1 − RT1
(t − x))RT2

(x)rT2
(x) dx.

A quantity of great interest for a system, is the probability that component with
component number i = 1, 2, . . . causes the death (unhealth) of the system. That
probability, in turn, coincides with the probability that the life length of component
with component number i = 1, 2, . . . is equal to the life length of the whole system!

Primarily, component that have high probabilities to cause the death (unhealth) of
the system, are those who should be supported by (warm or cold) redundant compo-
nents.

Example 5.8. For the system in Figure 5.6, we have

P{component with number 1 causes death}

= P {T1 ≤ max[T2, T3]}

=

∫

∞

0

P{max(T2, T3) ≥ t}fT1
(t)dt

=

∫

∞

0

(1 − FT2
(t)FT3

(t))fT1
(t)dt

=

∫

∞

0

(1 − (1 − RT2
(t))(1 − RT3

(t))) RT1
(t)rT1

(t)dt.

(This probability must be 2/3 when the life lengths T1, T2 and T3 are identically
distributed.)
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5.3 Laboration

5.3.1 Software

The laboration is to be done in Mathematica. Useful functions:

Integrate, Derivative, D, FindRoot, FindMaximum, ListPlot

You will not be able to get far with Mathematica without functions. A function is
defined by funcname[par ] = expression. For example, you can define a function
”f” through f[x , y ]:= x+y.

When using maximization/minimization procedures, make sure to apply suitable
constraints.

5.3.2 Tasks

1. In the system in Figure 5.9 below, the first three components have life lengths
T1, T2, T3 that are Weibull(1, 1

2
) distributed, while the fourth component have a

life length T4 that is exp(1

2
) distributed.

Figure 5.9. A system with four components.
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• Find the expected lifelength E{T} of the system.

• Plot the death rate rT (t), t ∈ (0, 10), for the system: Is the system IFR,
DFR or neither?

• Find the probability that it is component with component number 4 that
causes the death of the system.

2. (2p)

• Redo the first problem in previous task, first with the component with com-
ponent number 4 doubled with a warm redundant exp(1

2
) distributed compo-

nent, and then with the component with component number 4 doubled with
a cold redundant exp(1

2
) distributed component. Plot the death rates rT (t)

(including the one from task 1).

• For which values of the parameter ρ < 1

2
does a change of the component with

component number 4 to a exp(ρ) distributed component, have the same effect
on the expected life length E{T} of the system, as have the incorporation of
a warm and cold redundant exp(1

2
) distributed component?

3. (2p)
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In the system in Figure 5.10 below, the first component has a life length T1 that is
Weibull(µ, 1

3
) distributed, while the second and third components have life length

T2 and T3 that are Weibull(λ, 1

3
) distributed.

Figure 5.10. Yet another system with three components!
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The cost of a Weibull(γ, 1

3
) distributed component is 1/5 + 1/γ monetary units.

Display graphically the values of the parameters λ and µ, that maximizes the
expected life length E{T} of the system, at the total costs 1, 2, . . . , 10 monetary
units, respectively, of the system. Also plot the expected life length E{T} as a
function of the costs of 1, 2, . . . , 10 monetary units, for the optimal values of the
parameters λ and µ.

To get a pass task 1 has to be completed.


