$$
\begin{aligned}
& Y=\text { flood, yes } / \text { no, } Y \sim \operatorname{Bernoulli}(p) . X=\text { the amount, } \\
& X=\left\{\begin{aligned}
0, & \text { if } Y=0 \\
\operatorname{Exp}(\lambda), & \text { if } Y=1
\end{aligned}\right. \\
& \qquad \begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P(X \leq x \mid Y=0) P(Y=0)+P(X \leq x \mid Y=1) P(Y=1)= \\
& =(1-p)+\left(1-e^{\lambda x}\right) p
\end{aligned}
\end{aligned}
$$

Here, first split the $X \leq x$ event with Y using the definition for conditional probability and then note that if there is no flood then the amount is always 0 , that is the probability that it is less than x is 1 (x always greater than 0).

$$
P(X \leq t+h \mid X>t)=\frac{P(t<X \leq t+h)}{P(X>t)}=\frac{F_{X}(t+h)-F_{X}(t)}{1-F_{X}(t)}=1-e^{\lambda h}
$$

You can get that last one from throwing the expression in Mathematica and using FullSimplify on it or simply remembering that the exponential distribution possesses the "memorylessness" property. Meaning that the expected value of X is simply $t+\lambda$, if you parametrize the exponential distribution with its expected value ($1+\frac{1}{\lambda}$ otherwise).

