
Chapter 1

Robustness and Distribution
Assumptions

1.1 Introduction

In statistics, one often works with model assumptions, i.e., one assumes that data follow a certain
model. Then one makes use of methodology that is based on the model assumptions.

With the above setup, choosing the methodology can be a quite delicate issue, since the perfor-
mance of many methods may be very sensitive to whether the model assumption hold or not. For
some methods, even very small deviations from the model may result in poor performance.

Methods that perform well, even when there are some (more or less) minor deviation from the
model assumption, are called robust.

1.2 Distribution Assumptions in Statistics

Let X be a real-valued random variable (r.v.), which is assumed to have a certain specific distri-
bution function F : R → [0, 1]. Here F is allowed to depend on a parameter θ ∈ Rm, so that the
distribution can be written as

P{X ≤ x} = F (x; θ) for x ∈ R.

The parameter θ is assumed to have a certain specific value, which is normally not known.

Example 1.1. The random variable X is assumed to have normal N(µ, σ2)-
distribution for some (unknown) selection of the parameter θ = (µ, σ2) ∈ R×R+.

The above-mentioned type of scenario, or variants there of, are the frameworks for parametric
statistic methods. One example, where the method uses a distributional assumption in a crucial
manner, is analysis of variance, which assumes normal distribution, and it is not applicable when
that assumption is violated.

Observe that, in practice, one can usually not uncritically accept assumptions on the distribution
as valid. Hence it is important to be able to determine if the data really comes from an assumed
distribution F (x; θ), for some value of the parameter θ.
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Let X1, . . . , Xn be a random sample of X, i.e., independent random variables with the same
distribution as X (which is F (x; θ) if the assumption on the distribution holds). For the above
mentioned reasons, it is often of importance to determine whether the distribution of X really is
F (x; θ). This cannot be done in a completely precise manner, as we have randomness.

In fact, to test the distribution assumption F (x; θ), one has to use some statistical test, which
hopefully, with a large probability of being correct, can tell whether the data obeys the assumption.

1.2.1 Graphical Test of the Distribution Assumptions

We start with stating some facts that will be of importance to us:
Let X be a random variable that has a continuous distribution function F . Then the random

variable F (X) has a uniform distribution over [0, 1]. To see this, just notice that

P{F (X) < x} = P{X < F−1(x)} = F (F−1(x)) = x for x ∈ [0, 1]1.

The above fact is very useful, because it says that if we have a sample of random variables,
and we perform a transformation so that they become uniformly distributed over [0, 1], then the
transformation should (more or less) be the distribution function!

Now, as a consequence of the Glivenko-Cantelli theorem2, we have the following theorem:

Theorem 1.1. If the sample X1, . . . , Xn has continuous distribution function
F (x; θ), then for the ordered sample X(1) ≤ . . . ≤ X(n) and a fixed ε > 0, we have

lim
n→∞

P{max
1≤i≤n

∣∣(i− 0.5)/n− F (X(i); θ)
∣∣ ≤ ε} → 1.

Now, if the assumption that the sample X1, . . . , Xn has the distribution function F (x; θ) is
correct, then, according to Theorem 1.1,

max
1≤i≤n

∣∣(i− 0.5)/n− F (X(i); θ)
∣∣ ≈ 0 for large n.

Consequently, a plot of the sequence of pairs{(
(i− 0.5)/n, F (X(i); θ)

)}n
i=1

,

a so-called pp-plot, is approximately a 45◦-line. The same is then true for a so-called qq-plot of the
sequence {(

X(i), F
−1((i− 0.5)/n; θ)

)}n
i=1

.

A systematic discrepancy of a pp-plot or qq-plot from a 45◦-line indicates that the F (x; θ)-
assumption is not true. Notice that, because of randomness, these plots never become completely
straight-lined, for a finite sample size n, even when the F (x; θ)-assumption holds, but always display
a certain random variation around the 45◦-line. The larger n, the smaller that random variation
becomes.

1Here F−1 is a generalized inverse, if F is non-invertible.
2Glivenko-Cantelli says that the empirical distribution of a sample of a random variable converges uniformly to

the distribution of the random variable, as sample size tends to infinity.
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When the F (x; θ)-assumption is false, an additional systematic discrepancy from the 45◦-line
occurs, resulting in an (in some sense) curved plot.

Normally, the value of the parameter θ is not known, and hence must be estimated by an
estimator θ̂. Supposing that F (x; θ) is a continuous function of θ, and that the estimator θ̂ is
consistent, i.e., that it converges to θ in probability when n → ∞, the following pp- and qq-plots
would be approximate 45◦-lines{(

(i− 0.5)/n, F (X(i); θ̂)
)}n

i=1
and

{(
X(i), F

−1((i− 0.5)/n; θ̂)
)}n

i=1
,

when the F (x; θ)-assumption holds.

The decision whether a pp- or qq-plot displays systematic discrepancy, or only random variation
discrepancy, from a 45◦-line, is conveniently done by means of a comparison with a reference plot,
without systematic discrepancy. This in turn, can be done by generating a sample Y1, . . . , Yn from
a random variable Y that really has the distribution function F (y; θ), or F (y; θ̂) if θ is unknown
and estimated, so that the pp-plot{(

(i− 0.5)/n, F (Y(i); θ)
)}n

i=1
or

{(
(i− 0.5)/n, F (Y(i); θ̂)

)}n
i=1

,

and the qq-plot{(
Y(i), F

−1((i− 0.5)/n; θ)
)}n

i=1
or

{(
Y(i), F

−1((i− 0.5)/n; θ̂)
)}n

i=1

display only random variation discrepancy from a 45◦-line.

Of course, systematic variations from a 45◦-line can be hidden by large random variations, when
the sample size n is small in relation to the systematic variation. A non-significant pp- or qq-plot,
without clear systematic variations from a 45◦-line, does not necessarily imply that the F (x; θ)-
assumption is true3. However, one can conclude that the random variation of the data material is
similar to the variations of true F (x; θ)-data. This in turn, hopefully, should be enough for making
practical use of the F (x; θ) assumption, at least with robust methodology.

1.2.2 Statistical Test of Distribution Assumptions

In the previous section we described how to test a distribution assumption qualitatively, by a
graphical procedure. However, to do it quantitatively, we have to employ a test, which produces a
statistic, and hence gives us a p-value, that may be significant or non-significant, in turn. Be aware
that, like any test, we will never be able to state that the null hypothesis (in this case that the data
follows a certain distribution, like Normal) is correct. What we get out of the test is a statement
of the type ”data may be Normal” or ”the probability that data comes from a Normal distribution
is small”.

Chi-Square Goodness-of-Fit Test

With the chi-square test, given an assumed continuous or discrete distribution F (x; θ) for a sample,
one can assign probabilities that a random variable has a value within an interval, or a so called

3In the same fashion, a non-significant outcome of a statistical hypothesis test does not necessarily imply that the
null hypothesis is true.
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bin. Note that the choice of how to set the bins matters, the actual value of the chi-square test
statistic will depend on how the data is binned.

The chi-square test statistic of k bins is given by

χ2 =

k∑
i=1

(Oi − Ei)2

Ei
,

where Oi is the observed frequency for bin i, i.e., the number of observations that lies in the bin
(li, ui], and

Ei = n(F (ui; θ̂)− F (li; θ̂))

is the expected frequency of bin i, with F denoting the assumed distribution function. Here n is
the sample size, as before, and l1 < u1 ≤ l2 < u2 ≤ . . . ≤ lk < uk, with k being the number of bins.

Under the null hypothesis, that the F -assumption is true, the test statistic χ2 follows, approx-
imately, a chi-square distribution, with k − 1 − c degrees of freedom, where c is the number of
estimated parameters.

One disadvantage with the chi-square test, is that it is an asymptotic test (rather than exact
one), i.e., it requires a large enough sample size in order for the chi-square approximation to be
valid. As a rule of thumb, each bin should contain at least 5 observations from the sample.

Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov test is applicable when assuming a continuous distribution F for the
sample X1, . . . , Xn. The test statistic is given by4

D = max
1≤i≤n

∣∣∣∣F (X(i); θ)−
i

n

∣∣∣∣ ,
were X(1) ≤ . . . ≤ X(n) is the ordered sample.

Observe that the Kolmogorov-Smirnov statistic D is a measure of how much a pp-plot deviates
from a 45◦-line.

To calculate the p-value for D, one makes use of the fact that
√
nD is asymptotically Kolmogorov

distributed, under the null hypothesis. The distribution function of the Kolmogorov distribution is
given by

Q(x) = 1− 2
∞∑
i=1

(−1)i−1e−2i
2x2 .

In practice, there is seldom any need to do manual computations with the Kolmogorov distri-
bution, as the computations are handled by statistical programs. Note that when the parameters
are unknown, and therefore need to be estimated,

√
nD is no longer Kolmogorov distributed and

we need other means of calculating a p-value for the test5.

4We have previously used (i− 0.5)/n instead of i/n: This choice is really a matter of taste, and of
no practical importance.

5This is implemented in different ways in different softwares. For example, in the case of testing whether the
data comes from a normal distribution (with unknown mean and variance), the modified test procedure is called the
Lilliefors test and R has a specific function, called lillie.test(), for this.
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Some extension of the Kolmogorov-Smirnov test has been made, to emphasize certain regions
of values. One important example, is the Kuiper test, with test statistic

K = max
1≤i≤n

(
F (X(i); θ)−

i

n

)
+ max

1≤i≤n

(
i

n
− F (X(i); θ)

)
.

A Kuiper test emphasizes the importance of the tails, i.e., the smallest and largest observations.
This is of importance in applications to assessment of risk.

1.3 Parameter Estimation

1.3.1 Maximum Likelihood Estimation

Let x1, . . . , xn be a random sample from a r.v. X (assumed) having density fX(x; θ). The likelihood
function is defined as

L(θ;x1, . . . , xn) = f(x1, . . . , xn, θ) =

n∏
i=1

fX(xi; θ).

Note that it is a function of the parameter θ, the values x1, . . . , xn come from our observations!
The maximum likelihood (ML) estimator of θ is

θ̂ = arg max
θ∈Rm

L(θ;x1, . . . , xn)

It is often easier to regard the logarithm of the likelihood function, i.e. l(θ, x1, . . . , xn) = logL(θ, x1, . . . , xn)
and maximize this instead.

Example 1.2. Let x1, . . . , xn be a random sample from a r.v. which is Exp(λ)-
distributed, i.e. fX(x;λ) = λe−λx. This means that the likelihood function be-
comes

L(λ;x1, . . . , xn) = λn
n∏
i=1

e−λxi .

In this case it is analytically more tractable to regard the log-likelihood function,
i.e.

l(λ;x1, . . . , xn) = n log λ− λ
n∑
i=1

xi.

The ML-estimator is

λ̂ =
n∑n
i=1 xi

=
1

x̄
.

Even if in simple cases such as above the optimal value of the likelihood can, with minimal effort,
be found analytically, that is not always the case. It is more common that the likelihood equation
or equations (in case of several parameter being estimated simultaneously, like in regression) do
not have an analytical solution. Numerical optimization has then to be applied.
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1.3.2 Robust Estimation

One of the most natural illustrations of robust estimation techniques, is the estimation of a location
parameter, of a continuous symmetric distribution: Assume that we have a sample X1, . . . , Xn from
a distribution function of the form F (x, θ) = F (x − θ), where θ ∈ R. Here θ is called a location
parameter.

Example 1.3. If F is a normal distribution, then θ coincides with the expected
value and the median. Further, the sample mean

X̄ =
1

n

n∑
i=1

Xi

is a good estimator of θ.

Example 1.4. If F is Cauchy distributed, with probability density function

fX(x; θ) =
1

π(1 + (x− θ)2)
,

then the sample mean is not a good estimator of the location parameter θ. The
reason for this is that the Cauchy distribution allows, with a large probability
very large values, and does in fact not even have a well-defined (finite) expected
value. This means that the sample may contain some extremely small or large
“non-typical” values, so called outliers, and a few such may heavily influence the
sample mean, so that it deviates significantly from θ.

To avoid the problem indicated in Example 1.4, one may, for example, replace the sample mean
with the sample median, as estimator of the location parameter: The latter does not display the
sensitivity to outliers, as does the former. In other words, the sample median is a robust estimator.

Robustness can, of course, be defined in mathematical terms. That description usually is based
on the influence function, which measures the sensitivity to outliers. However, this subject matter
goes beyond the scope of this course.

An intuitive way, to view the issue of the robustness of an estimator, is to look at the breakdown
point. This is the largest percentage of data points that can be changed arbitrarily, without causing
undue influence on the estimator.

Example 1.5. The sample median has 50% breakdown. This is illustrated by the
fact that, for a sample of 100 ordered data, the first 49 can be changed arbitrarily,
as long as their values stay smaller than the 50:th smallest observation, without
affecting the value of the sample median at all.

The sample mean is not a robust estimator, because changing the value of a single
observation may heavily influence the value of the sample mean. This means that
the sample mean has breakdown point 0%.

In practice, the choice of estimator is a trade-off between robustness and efficiency, as very
robust estimators tends to be inefficient, i.e., they do not make full use of the data material.
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1.4 Softwares - some hints on useful commands/routines

General hint for all program languages we are going to use in the course: before rushing into raw-
coding a formula, make sure there isn’t a pre-programmed function that does exactly what you
need.

Matlab: Help→ Product help→ Search. Surprisingly effective. Also, Matlab is good at using
vectors for calculations, meaning that if you can re-write your for-loop as a vector operation, do it.

R: rnorm, qnorm, pnorm, matrix, apply, postscript, dev.off() (the last two are for
saving plots). The syntax is similar to Matlab, but it uses different symbols, so look up for the
brackets. R is also good at using vectors for calculations, and using apply is a nice way to apply
a function to the rows or the columns of a matrix.

We recommend you to use RStudio, an IDE (Integrated Development Environment) for R. If
you do, you have access to help pages within the environment and can easily search for commands
and concepts. Also, you can save the plots by clicking Export.

However, if you choose to run R from the terminal, you can find out what a command does
through e.g. ?rnorm (and leave help by pressing q). Alternatively, google it.

1.5 Computer assignment

The aim of this lab is not so much to teach complex statistical methods as to give an introduction
to some of the different software used in the course. In Assignment 1 you are required to use
different methods to check if a distribution assumption is valid and to explore how the coverage of a
confidence interval for the variance estimate may be influenced by a faulty distribution assumption,
while in Assignment 2 you will compare the behavior of location estimators; the sample mean,
median and trimmed mean.

You should first do the lab using Matlab. Then you are required to repeat parts of the lab
using R. The parts to repeat using R are Assignment 1.1 (but only part 2 with data from gamma
distribution), Assignment 1.2 (but only part 2 with data from gamma distribution) and Assignment
2.3 (but only for data from the contaminated distribution).

To pass the exercise you have to present the answers to the questions marked in bold to the
exercise teacher. No full report is needed on this exercise.

There are several questions that ask you to perform tests or construct confidence intervals.
For tests, we want you to formally set up the null hypothesis and its alternative, and then give
the value of the test statistic and/or p-value and explain what your obtained test statistic and/or
p-value means in terms of accepting/rejecting the null hypothesis, and what conclusions you can
draw from this acceptance/rejection. For confidence intervals, we want you to give a definition of
it and explain what obtaining a certain CI tells you about the distribution parameter in question.
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1.5.1 Assignment 1, Effect of Distribution Assumptions

Assignment 1.1

The task in Assignment 1.1 is to review a specific distribution assumption. In both cases below,
let us say you do not know the true distribution for the data, but you think that it is the normal
distribution (i.e. your distribution assumption for the data is ”normal distribution”).

• Generate a sample with n = 100 normally distributed random variables with parameters
µ = 0 and σ = 1. Get an overview of your data by doing a histogram of the data. Do a pp- or
qq-plot of the data. Also perform a formal goodness-of-fit test (Chi-square or Kolmogorov-
Smirnov, or some other relevant test). Interpret the results. Should be done in Matlab

• Now, generate n = 100 observations from a decidedly non-normal distribution, namely
Gamma(a, b) with a = 2 (shape parameter), b = 2 (scale parameter). We still pretend
that we do not know the true distribution and that we think that it is the normal distri-
bution. As before, make a histogram of the data to get an overview, and then do a pp- or
qq-plot and perform a formal goodness-of-fit test. Interpret the results. Should be done in
Matlab and R.

Comment: There are other probability plots than pp- and qq-plots. A popular one is the so
called ”normal probability plot” which the ”normplot” function in Matlab does. It is similar to
pp/qq and serves the same purpose. You may use it, but in this case you will have to explain what,
exactly, is plotted and why the ”straight line = normal distribution” argument is valid even here.

Comment for the implementation in R: The function chisq.test() might seem a bit user-
unfriendly for doing a goodness-of-fit test of normality. A tip is to read the footnote on page 4 in
this document and check out the functions in the R package ”nortest”.

Question 1.1. Are the simulated data sets normally distributed? Show histograms,
pp- or qq-plots and state the null hypothesis for the goodness of fit test. Can the null
hypothesis be rejected?

Assignment 1.2

Let X1, . . . , Xn be is a random sample from a distribution with mean µ and standard deviation σ.
An estimator for the variance σ2, when µ is not known, is the sample variance

S2
X =

1

n− 1

n∑
i=1

(Xi − X̄)2,

where X̄ is the sample mean. Assuming that Xi ∼ N(µ, σ), we can construct the test statistic

(n− 1)S2
X

σ2

which is going to follow a chi-square distribution with n− 1 degrees of freedom. This statistic can
then be used to create a confidence interval for σ2 (if in doubt, consult any coursebook on basic
statistics).

Here, you are going to examine what happens to the coverage of the confidence interval if the
normal distribution assumption is fulfilled or not.
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• Again, generate a sample with n = 100 normal distributed random variables with parameters
µ = 0 and σ = 1. Calculate a confidence interval for σ2, with confidence level 0.95. Repeat
1000 times and count the number of intervals which contain the true σ2. Also, calculate the
average width of the intervals. How do the results compare with what you expect from the
confidence level being 0.95? Should be done in Matlab.

• Repeat the task above, but instead using n = 100 observations from a Gamma(a, b) distri-
bution with a=2, b=2 (assume that you think the data come from a normal distribution).
What percentage of the CI:s cover the true σ2? What is the average width of the intervals?
Remember that the variance of a gamma distribution is ab2. How do the results compare
with what you expect from the confidence level being 0.95? Should be done in Matlab and R.

Question 1.2. How many of your 1000 simulated confidence intervals contain the
true σ2 in each case? What would you expect from the confidence level being 0.95?

1.5.2 Assignment 2, Robust Estimation

An ε-contaminated normal distribution may be defined as

X = WY + (1−W )Z =

{
Y with probability 1− ε
Z with probability ε

.

Here Y ∼ N(µ = 0, σ2Y ), Z ∼ F , and W ∼ Bernoulli(1 − ε), with ε ∈ (0, 1) being a small number.
Further, F is other distribution than the N(0, σ2Y ) distribution that usually displays much wilder
fluctuation (i.e., more extreme values).

This contaminated distribution can be viewed as that some phenomena usually is observed, at
the rate of 1− ε, but that some other phenomena is observed at the rate ε. In practice, this can be
caused by somebody occasionally making a faulty measurement, or a sloppy computer registration
of a result.

As the contaminated distribution is not normal, it can be difficult to analyze. In addition, when
using a model of this kind, one is usually interested in the non-contaminated random variable Y ,
rather than the contaminated variable X.

One common way to handle the contaminated data, is to remove outliers. Notice that this is
correct, if one is only interested in Y , but might be erroneous if really interested in the contaminated
distribution of X.

Assignment 2.1

• Sample 100 observations from such a contaminated distribution, where σY = 1, F Cauchy
distributed with location parameter 0 and ε = 0.05. Do a histogram of the data, a pp- or qq-
plot of the data and a goodness-of-fit test. Repeat the simulation a couple of times. Interpret
and comment on the results. Can you see outliers?

Hint: For simulation of the Cauchy distribution, one can make use of the fact that a Cauchy
distribution with location parameter 0 is the same thing as a Student-t distribution, with 1 degree
of freedom.
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Assignment 2.2

• Sample 100 observations from the distribution in the first part and estimate the mean. Repeat
1000 times. Order the means and register the value of results number 25 and 975.6 Also, make
a histogram of the means. Do the same thing for a non-contaminated normal distribution.
Compare the results. Should be done in Matlab.

Assignment 2.3

• Repeat the tasks in Assignment 2.2, but this time replacing the sample mean with the robust
estimators, made up of the sample median, and of the α-trimmed mean

X̄α =
X(k+1) + . . .+X(n−k)

n− 2k
with α =

k

n
,

respectively, where X(·) is the ordered sample. Choose α = 0.1. Again, order the results and
register the values of results number 25 and 975. Create histograms both for the medians
and the trimmed means. Comments and conclusions? Should be done in Matlab and R (but
you do not have to compare with a non-contaminated distribution when using R).

Question: Show a histogram for 100 observations of the contaminated distribution
(one simulation). Show a histogram of the means of 1000 simulations. Show the
25th and 975th value of the mean, median and alpha-trimmed mean. Which of these
estimators are more robust to outliers?

6The range between these two values does in fact make up a bootstrap confidence interval for the expected value
of X, with confidence level α = 0.95: We will return to this later in the course.

10


