Lab 2, Decision theory

2017 TMS150, MSG400

General task and terms

- Task: Choose between different actions
- Unknown: future *state/event*
- Assume: possible to do a description of our gain/loss depending on action and state, called utility function
- Assume: a probability distribution for future states/conditions

Example 1, actions and states

• Actions to choose between:

 $a_1 = go to beach$

 $a_2 = go shopping$

- Set of possible states:
 - θ_1 = sunny tomorrow

 θ_2 = rainy tomorrow

 $\pi(\theta_1) = 0.8, \pi(\theta_2) = 0.2$ (assumption)

Ex 1, utility function $u(a,\theta)$

States of nature
$$\theta_1 =$$
 "sunny" $\theta_2 =$ "rainy"Actions $a_1 =$ "beach"10-5 $a_2 =$ "shopping"26

Expected utility

 How much we expect to gain by choosing each of the actions, given a probability distribution π(θ) for the possible states

•
$$U(a) = E_{\Theta}[u(a, \theta)] = ...$$

•
$$U(a_1) = u(a_1, \theta_1)^* \pi(\theta_1) + u(a_1, \theta_2)^* \pi(\theta_2) =$$

= 10*0.8 + (-5)*0.2 = 7

$$U(a_2) = u(a_2, \theta_1)^* \pi(\theta_1) + u(a_2, \theta_2)^* \pi(\theta_2) =$$

= 2*0.8 + 6*0.2 = 2.8

How to make decisions

- Choose the action with highest expected utility! / Maximize the expected utility.
- A set of actions
- A set of possible states/events, assume a probability distribution for the states/events
- Determine a utility function $u(a,\theta)$
- Calculate, and maximize, the expected utility U(a)

Example 2, actions and states

• Actions to choose between:

$$a_1 =$$
store the money away

 a_2 = invest the money in stocks

• Set of possible states:

all possible differences, θ , in the prices of the stock between today and tomorrow, Θ cont. $\theta \sim N(0,1)$ (assumption)

Utility functions $u(a_2, \theta)$, 3 examples

Expected utility, risk averse

• Risk averse, action a₂:

$$\mathsf{E}_{\Theta}[\mathsf{u}(\mathsf{a}_2,\theta)] = \int_{-\infty}^{\infty} (1 - e^{-\theta}) f(\theta) d\theta = -0.65$$

- Expected utility, U(a), for case "risk averse":
 U(a₁) = 0
 U(a₂) = -0.65
- Choose a₁!

Expected utility

• Risk averse:

$$\mathsf{E}_{\Theta}[\mathsf{u}_{1}(\mathsf{a}_{2},\theta)] = \int_{-\infty}^{\infty} (1 - e^{-\theta}) f(\theta) d\theta = -0.65$$

• Risk seeking:

$$\mathsf{E}_{\Theta}[\mathsf{u}_{2}(\mathsf{a}_{2},\theta)] = \int_{-\infty}^{\infty} (e^{\theta} - 1) f(\theta) d\theta = 0.65$$

• Risk neutral:

 $E_{\Theta}[u_2(a_2,\theta)] = \int_{-\infty}^{\infty} \theta f(\theta) d\theta = 0$

In all cases the expected utility for a₁ equals 0

The autocorrelation function

Report writing

- One of the learning goals of the course
- Write individually (see rules on course web page)
- Clear report structure and writing gives **0.5 points** extra
 - See templates on course page
 - Figure size: labels etc. should be easily readable when printed
 - Use a sensible number of digits when printing values!
- Code
 - Include in appendix
 - Tidy and well commented code gives **0.5 points** extra
 - Code and comments can be identical to your lab partner's
- See details on course web page!

Report writing

- Report should "stand by itself"
 - Give brief background
 - What have you done and how did you do it?
 - Results: numerical values and figures and your interpretation
 - What was the big picture question(s) and what did you find out?
- It should be clear you understand:
 - The functions you have used
 - Why your results make sense

Student representatives

MPENMbaazm@student.chalmers.seExchangetheobo@student.chalmers.seTKTEMevelinne@student.chalmers.seMPENMtangp@student.chalmers.se

MARCUS BAAZ THÉO BOCQUELET EVELINNE DIMOVSKI PENGFEI TANG

(Please contact me if you haven't already)

Discuss opinions about the course with the student representatives or with Andreas or me directly

Move C demo?

Do most students want to move the C demo session from Thu 5 Oct 9:00 to Mon 2 Oct 9:00?