
Chapter 3

Reliability and Survival

3.1 Systems of components

We will study systems that in a simple case might look like in Figure 3.1 below:

Figure 3.1. A simple system.

3

2

1

A B

In the system in Figure 3.1, the component with component number i may be healthy, for
i = 1, 2, . . . , otherwise it is unhealthy or dead. The system is healthy if there is a path from the
point A to the point B which only passes healthy components. Otherwise the system is unhealthy.

Example 3.1. The series coupling in Figure 3.2 below is healthy if and only if
all its components are healthy.

Figure 3.2. Series coupling.
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Example 3.2. The parallell coupling in Figure 3.3 below is healthy if and only
if at least one of its components is healthy.

Figure 3.3. parallell coupling.
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A system can be built by means of a finite number of series couplings and parallel couplings.
See Figures 3.4 and 3.5 below for an example of how this works in a practical application.

We will study systems with component numbers i = 1, 2, . . . which are healthy with certain
health probabilities p1, p2, . . . . Unless otherwise is stated, the components of a system are assumed
to be independent of each other.

Example 3.3. The system in the Figure 3.4 below is a series coupling of two systems with health
probabilities p1 and 1− (1− p2) (1− p3), respectively. The health probability for the whole system
is p1[1− (1−p2)(1−p3)].

Figure 3.4. A simple system with health probabilities.
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Figure 3.5. Composition of a simple system as a series coupling of a single component
with a parallell coupling.

The components with component numbers i = 1, 2, . . . of a system have certain life lengths
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T1, T2, . . . . The life lengths are modeled as random variables that are mutually independent,
unless otherwise is stated.

The relation between the health probability and the life length Ti of the component with com-
ponent number i is as follows:

pi = pi(t)

= P{component with component number i is healthy at time t}
= P{Ti > t}
= 1− FTi(t)

Here FTi(t) = P{Ti ≤ t}, i = 1, . . . , n, are the distribution functions of the life lengths T1, T2, . . ..
These distribution functions in turn are assumed to be continuous, unless otherwise is stated.

Definition 3.1. The survival function RT of a system with life length T is given by

RT (t) = P{the system is healthy at time t}= P{T >t} = 1−FT (t)

for t > 0, where FT (t) is the distribution function of the life length.

Example 3.4. The life length of the system in the Figure 3.6 below is given by
T = min{T1,max[T2, T3]}, see also Example 3.3. Hence the survival function for
the system is given by

RT (t) = P{T > t}
= P{T1 > t} [1− (1−P{T2 > t}) (1−P{T3 > t})]
= RT1(t) [1− (1−RT2(t))(1−RT3(t))] .

Figure 3.6. A simple system with life lengths.
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Definition 3.2. The death intensity rT of a system with life length T is given by

rT (t) = − d

dt
ln (RT (t)) for t > 0.

Definition 3.3. A system with life length T has increasing failure rate, IFR, if the death intensity
is increasing (r′(t) ≥ 0 for t > 0). A system with life length T has decreasing failure rate, DFR, if
the death intensity is decreasing (r′(t) ≤ 0 for t > 0).
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Example 3.5. It is quite common that life lengths have failure rates that are
neither IFR or DFR, but instead follow a so called bath tub curve, BTC, the
principal appearance of which is displayed in Figure 3.7 below. In that figure
the region I corresponds to an early phase with a comparatively high probability
of unhealth (as for example, small children). The region II corresponds to a
component that has survived these early hazards and has settled at a lesser death
intensity (as for example, grown up people). Finally, the region III corresponds
to an aged component, where the death intensity increases with accumulated age
(as for example, aged people).

Figure 3.7. Example of a life length with a death intensity that displays a BTC shape.
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3.2 More on systems

The following theorem explains that the death intensity really is the (infinitesimal) intensity at
which unhealth occurs:

Theorem 3.1. For a life length T with death intensity rT , we have

P{T ≤ t+ h|T > t} = rT (t)h+ o(h) as h ↓ 0.

Proof. Writing FT and fT for the distribution function and probability density function of the life
length T , respectively, we have

P{T ≤ t+ h|T > t} =
FT (t+ h)− FT (t)

1− FT (t)
=
fT (t)h+ o(h)

RT (t)

= − d

dt
ln(RT (t))h+ o(h) = rT (t)h+ o(h). �
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Theorem 3.2. A function r : (0,∞)→ [0,∞) is a death intensity if and only if∫ ∞
0

r(t)dt =∞.

In that case the corresponding survival function is given by

R(t) = exp

{
−
∫ t

0
r(s)ds

}
.

Proof. If r is a death intensity of a system with survival function RT , then a differentiation of the
function

R(t) = exp

{
−
∫ t

0
r(s)ds

}
gives

− d

dt
ln(R(t)) = −

−r(t) exp

{
−
∫ t

0
r(s)ds

}
exp

{
−
∫ t

0
r(s)ds

} = r(t).

As the function − ln(R(t)) has the same derivative as the function − ln(RT (t)), namely the death
intensity r(t), it follows that the functions − ln(R(t)) and − ln(RT (t)) can differ only by a additive
constant, so that the functions R(t) and RT (t) differ only by a multiplicative constant. Since
R(0) = 1 = P{T > 0} = RT (0), we conclude that the functions R(t) and RT (t) are equal. Finally,
as

lim
t→∞

exp

{
−
∫ t

0
r(s)ds

}
= lim

t→∞
RT (t) = lim

t→∞
P{T > t} = 0,

we must have
∫∞
0 r(s)ds =∞.

Conversely, if
∫∞
0 r(s)ds =∞ and we define the function

R(t) = exp

{
−
∫ t

0
r(s) ds

}
,

then R(t) in decreasing with R(0) = 1 and R(∞) = 0, so that F (t) = 1 − R(t) is increasing with
F (0) = 0 and F (∞) = 1. This makes F a probability distribution function, so that R is a survival
function. �

Theorem 3.3. For a life length T we have the following formula for expectations

E{T} =

∫ ∞
0

RT (t) dt

Proof. By integration by parts, we get

E{T} =

∫ ∞
0

t
(
− d

dt
RT (t)

)
dt = − [tRT (t)]∞0 +

∫ ∞
0

RT (t)dt =

∫ ∞
0

RT (t)dt. �
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A life length T with a constant death intensity rT (t) = λ has the lack of memory property
(cf. Theorem 3.1). By Theorem 3.2, a life length T lacks memory if and only if T is exponentially
exp(λ) distributed with parameter λ, i.e., RT (t) = e−λt.

Example 3.6. The second simplest form of death intensity, after a constant one,
is a polynomial death intensity rT (t) = babtb−1. In this case, Theorem 3.2 gives
that the survival function is RT (t) = exp{−(a t)b}, that is, a Weibull distribution
with parameters a and b, Weibull(a, b)6. And so we have the expectation

E{T} =

∫ ∞
0

RT (t)dt =

∫ ∞
0

exp
{
−abtb

}
dt

by Theorem 3.3.

If the life lengths T1, . . . , Tn are exponentially exp(λ) distributed, then their sum T ≡ T1+. . .+Tn
is gamma(n, λ) distributed with parameters n and λ. Hence the corresponding probability density
function is given by

fT (t) =
λntn−1

(n− 1)!
e−λt for t > 0,

giving the survival function

RT (t) =
n−1∑
k=0

λktk

k!
e−λt for t > 0.

To achieve a high health probability of a system, the system may be equipped with more
components than are actually needed for its health, if all the components are healthy. In other
words, the system is not a pure series coupling, but a series coupling of subsystems, some of which
are parallel couplings, to achieve higher health probability.

A component that is not required for the health of a system, when all other components of the
system are healthy, is called a redundant component, RC.

A warm redundant components, WRC, is incorporated with the system already from the start
of the system, while a cold redundant component, CRC, is incorporated with the system first at the
time at which it is required for the health of the system.

6It should be noted that there is a lot of variation in the parametrization of the Weibull distribution, so that, e.g.,
what is denoted Weibull(a, b) by us could be denoted Weibull(b, 1/a) in a software package.
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Example 3.7. Figure 3.8 below depicts a system where a first component with
life length T1 is supported by a second redundant component with life length T2.

Figure 3.8. A system where a first component is supported by a second redundant
component.
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For the life length T of the system we have T = max{T1, T2} when the redundant
component is warm, so that

RT (t) = 1− (1−RT1(t))(1−RT2(t)).

If the redundant component is cold, we get T = T1 + T2 instead, so that,

RT (t) = 1−
∫ t

0
(1−RT1(t− x))RT2(x)rT2(x) dx.

A quantity of great interest for a system, is the probability that component with component
number i = 1, 2, . . . causes the death (unhealth) of the system. That probability, in turn, coincides
with the probability that the life length of component with component number i = 1, 2, . . . is equal
to the life length of the whole system!

Primarily, component that have high probabilities to cause the death (unhealth) of the system,
are those who should be supported by (warm or cold) redundant components.

Example 3.8. For the system in Figure 3.6, we have

P{component with number 1 causes death}
= P {T1 ≤ max[T2, T3]}

=

∫ ∞
0

P{max(T2, T3) ≥ t}fT1(t)dt

=

∫ ∞
0

(1− FT2(t)FT3(t))fT1(t)dt

=

∫ ∞
0

(1− (1−RT2(t))(1−RT3(t)))RT1(t)rT1(t)dt.

(This probability must be 2/3 when the life lengths T1, T2 and T3 are identically
distributed.)
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3.3 Computer assignment

In order to get a pass on this lab, 5 out of 11 points are needed.

Be careful to include in your report not only a description of the code that is needed, but also
your understanding of the problem and an explanation to your ”theoretical strategy”. In addition to
the general instructions for report writing that can be found on the homepage, here are some extra
advice on things you should remember to include in the ”Theory and implementation” sections:

• In Assignment 1.1, show and explain how you derived the survival function for the system.

• In Assignment 1.2, show and explain how you derived the expression that can be used to
calculate the probability that it is component number four that causes the death of the
system.

• In Assignment 2.1, show and describe how you derived the two different survival functions for
the new systems, with emphasis on the survival function for the system with a cold redundant
component (since the derivation in the warm case is similar to the one you did in Assignment
1.1).

• In Assignment 2.2 and 3, remember to describe your strategy to solve the task and show the
functions (e.g. survival function) you will use.

Remember also to comment on your results in the ”Results and discussion” section (for example,
are the results as expected)?

3.3.1 Assignment 1 (4 p)

In the system in Figure 3.9 below, the first three components have life lengths T1, T2, T3 that
are Weibull(1, 12) distributed, while the fourth component have a life length T4 that is exp(12)
distributed.

Figure 3.9. A system with four components.
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Assignment 1.1

Find the expected life length E{T} of the system. Also, plot the death rate rT (t), t ∈ (0, 10), for
the system: Is the system IFR, DFR or neither?
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Assignment 1.2

Find the probability that it is component with component number 4 that causes the death of the
system.

3.3.2 Assignment 2 (3 p)

Assignment 2.1

Redo the calculation of expected life length for the system, first with the component with compo-
nent number 4 doubled with a warm redundant exp(12) distributed component, and then with the
component with component number 4 doubled with a cold redundant exp(12) distributed compo-
nent. Also, plot the death rates rT (t) (including the one from task 1).

Assignment 2.2

For which values of the parameter ρ < 1
2 does a change of the component with component number

4 to a exp(ρ) distributed component, have the same effect on the expected life length E{T} of the
system, as have the incorporation of a warm and cold (respectively) redundant exp(12) distributed
component?

3.3.3 Assignment 3 (3 p)

In the system in Figure 3.10 below, the first component has a life length T1 that is Weibull(µ, 13)
distributed, while the second and third components have life length T2 and T3 that are Weibull(λ, 13)
distributed.

Figure 3.10. Yet another system with three components!
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The cost of a Weibull(γ, 13) distributed component is 1/5 + 1/γ monetary units. Display graph-
ically the values of the parameters λ and µ, that maximizes the expected life length E{T} of the
system, at the total costs 1, 2, . . . , 10 monetary units, respectively, of the system. Also plot the
expected life length E{T} as a function of the costs of 1, 2, . . . , 10 monetary units, for the optimal
values of the parameters λ and µ.

3.3.4 Software - some hints

The laboration is to be done in R.

• Useful functions:

integrate, numDeriv::grad, Vectorize, uniroot, alabama::constrOptim.nl, where the
notation numDeriv::grad means the function grad in the package numDeriv.
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• When using (for example) maximization/minimization procedures, make sure to apply suit-
able constraints.

• For the Weibull and Gamma distribution, read carefully on page 6 in the lecture notes how
the distributions are defined (read the footnote also!). For example, note that we use the rate
parameter in the Gamma distribution. Then, if you use the inbuilt functions, check how R
defines the distributions.

• Some functions that take another function as an argument require that the argument function
is vectorized. That means that when the function is applied to a vector, it should return a
vector consisting the result from applying the function to each element in the input vector.
If it is inconvenient to change a non-vectorized function into a vectorized one, the Vectorize

function can be used. An automatically vectorized function may be slower than a manually
vectorized function, though.

• When doing numerical calculations, remember to check how exact the results are! Do not
give answers with non-significant digits, but do not give too inexact answers either!
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