TMS150/MSG400

Stochastic data processing and simulation

Course Aims

- Solve concrete statistical problems using mathematical and statistical software
 - R, Matlab and C
- Communicate your solution to others in writing

Learning objectives

- Apply theoretical knowledge of mathematical statistics in realistic problems
- Combine analytical (pen and paper) with numerical (computer) problem solving
- Practice scientific and technical writing
- Learn/practice software packages: Matlab, R, C, Latex

Course topics

- Work with and explore data sets
- Simulation of data from a given distribution
- Test of distribution assumptions and robust estimators
- Decision theory
- Analysis of financial data, utility maximization
- Bootstrap, empirical distributions, resampling
- Monte Carlo methods, Monte Carlo Integration
- Stochastic processes (simulation)
- Reliability and survival

Course web page

http://www.math.chalmers.se/Stat/Grundutb/CTH/tms150/1819/

Course setup

- No written exam
- 6 mandatory computer projects (labs)
- OK to work in pairs, but each student has to write his/her own report
- OK to work from home, but you will only get help during exercise sessions
- Lab 1 and 5, only answers/ show the exercise teacher. Only pass/non-pass
- Lab 2-4 and 6 Complete reports
- Max 10 pages per report including figures, but excluding appendix
- The report should be written in Latex.
- Include well-commented code in appendix

Computer room sessions

- 4 hours, Mondays and Thursdays
- Please save all interactions with teachers to computer sessions or lectures
 - Many students, and many questions
- If you really need to come to my office, come on Fridays 13:15-14:00 (not 7 Sep, 12 Oct)
- Mail is OK for questions with short answers

Computer exercises

Lab	Торіс	Programming language	Examination
Lab 1	Robustness and distribution assumptions	Matlab and R	Only answers
Lab 2	Decision theory	Matlab	Complete report
Lab 3	Reliability and survival	R	Complete report
Lab 4	Bootstrap	R	Complete report
Lab 5	Monte Carlo integration	C and Matlab	Only answers
Lab 6	Simulation of stochastic processes	R	Complete report

Grading

Project	Total	Pass
Lab 1	Pass	Pass
Lab 2	13	7
Lab 3	11	5
Lab 4	14	6
Lab 5	Pass	Pass
Lab 6	10	4
Total	48	22

• Pass on all labs

Chalmers:

3: Pass on all 6 labs (and 22 points)4: Pass on all 6 labs and 32 points

5: Pass on all 6 labs and 42 points

GU:

G: Pass on all 6 labs (and 22 points) VG: Pass on all 6 labs and 37 points

Deadlines

- Recommended deadline
 - To not save all work to the end
 - To get feedback and have time to improve the report
- Final deadline
- See dates course page

Hand-in of reports

- First report hand-in:
 - Send email to <u>statdata.chalmers@analys.urkund.se</u>
 - Attach your report as pdf
- Opportunity to hand in one return per report to get more points
- Second hand-in:
 - Send from same mail address
 - Mention in beginning of report what has changed

Programming

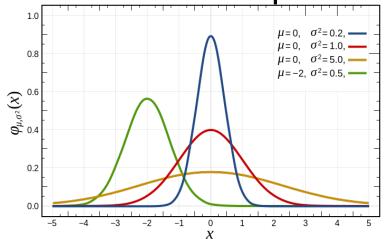
- Matlab
 - Vector operations and matrix multiplications typically faster than forloops
- R
 - Vector operations and matrix multiplications typically faster than forloops
 - Statistical programming language
 - Free
 - Load packages/libraries
- C
 - Fast (especially compared to Matlab/R code with many for-loops)
 - Low-level programming language

Programming tips

- Use in-built functions if available
- Check help pages to get details about a function
 - Matlab: help std
 - R:?sd, help('sd')

Distribution assumptions in statistics

- Model the randomness/variation in the data
- Assumption: A random sample comes from an underlying distribution
- Statistical testing: The test statistic follows a specific distribution under the null hypothesis
- Are the distribution assumptions correct?



Example: Body temperature

• Measurements for 65 male and 65 female patients

Body temperature	Gender	Heart rate	Body temperature	Gender	Heart rate	Body temperature	Gender	Heart rate
35.7	' male	70	36.9	male	71	36.7	female	89
36.3	male	69	37.0	male	66	36.8	female	65
36.3	male	78	37.1	male	78	36.8	female	79
36.4	male	69	37.2	male	80	36.9	female	83
36.6	male	73	37.3	male	71	37.0	female	77
36.6	male	72	37.5	male	75	37.1	female	64
36.7	' male	67	36.2	female	66	37.1	female	70
36.7	' male	67	36.5	female	84	37.1	female	73
36.8	male	72	36.6	female	71	37.2	female	83
36.9	male	70	36.7	female	76	37.8	female	78

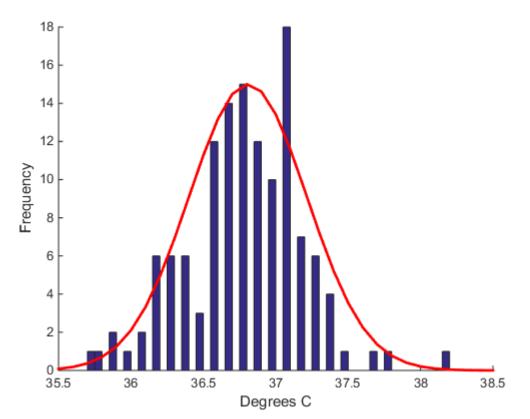
• Mackowiak, P. A., Wasserman, S. S., and Levine, M. M. (1992), "A Critical Appraisal of 98.6 Degrees F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich," *Journal of the American Medical Association*, 268, 1578-1580.

Questions to ask

- Is the distribution of temperatures normal?
- Is the true population mean really 37.0 degrees C?
- At what temperature should we consider someone's temperature to be "abnormal"?
- Is there a significant difference between males and females in normal temperature?
- Is there a correlation between body temperature and heart rate?

Distribution assumptions

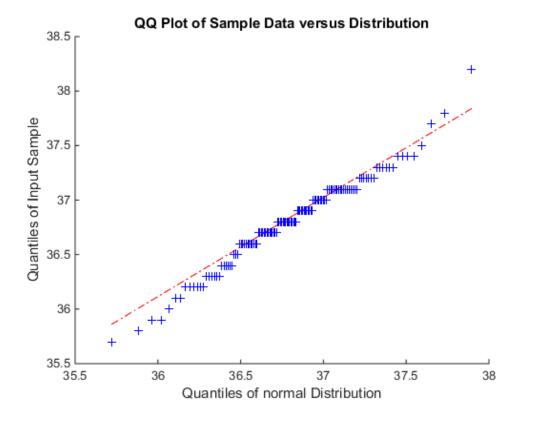
- Explore/plot the data
 - Histogram



Test of distribution assumptions

- Graphical
 - Quantile-quantile plot (qq-plot)
 - Probability-probability plot (pp-plot)
- Formal test
 - Chi-square goodness of fit test
 - Kolmogorov-Smirnoff test (KS-test)
 - Other tests (e.g. for specific distributions)
- In both ways we compare the (empirical) distribution of the data with a theoretical distribution

qq-plot (quantile-quantile plot) • Temperature data



- Assume that the data is normally distributed.
- Estimate the parameters μ and σ² from the data
- *μ*=36.808, *σ*²=0.166
- Compare the distribution of the data with N(36.808,0.166)

If the data is normally distributed the points will approximately follow the line x=y

Graphical test of distribution assumptions

- Investigate if the sample X₁,...,X_n follows a distribution with cdf F(x)
- Order the sample: $X_{(1)}, X_{(2)}, ..., X_{(n)}$
- Plot the sequence of pairs: qq-plot: $\{X_{(i)}, F^{-1}(i/n)\}_{i=1}^{n}$

Sometimes (i-0.5)/n

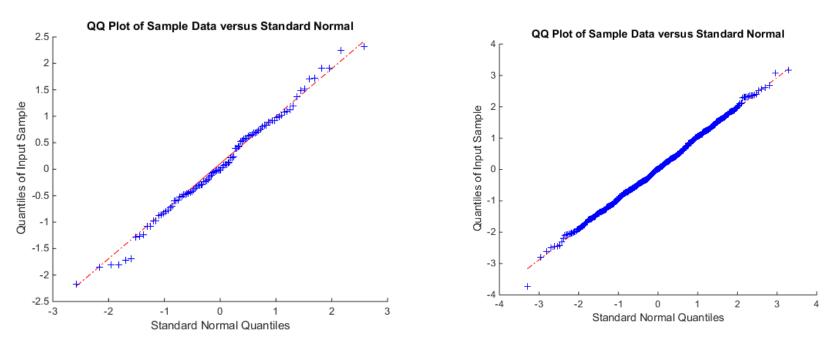
Theoretical quantile

pp-plot:
$$\left\{\frac{i}{n}, F(X_{(i)})\right\}_{i=1}^{n}$$

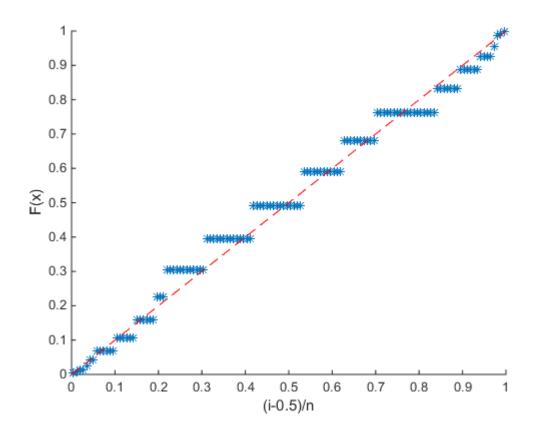
qq-plot (quantile-quantile plot)

- Simulated normal distribution
 - n=100

n=1000



pp-plot



Chi-square Goodness of fit test

- H_0 : The data is normally distributed
- *H_a*: The data is not normally distributed
- Estimate the parameters μ and σ^2 from the data
- Divide the data into k bins

Expected observations in bin (a,b]: $E_i = (F(b) - F(a))^*N$

Bin	number of observed	number of expected
35.70-36.20	13	8.83
36.20-36.45	12	15.87
36.45-36.70	29	26.75
36.70-36.95	27	31.30
36.95-37.20	35	25.43
37.20-37.45	10	14.34
37.45-38.20	4	7.47

• Test statistic:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

 Under H₀: Follows approximately a Chi-square distribution with k-1-c degrees of freedom (c is the number of estimated parameters)

Chi-square Goodness of fit test

For the temperature data:

 χ^2 =10.23 df=7-2-1=4 *Critical value:* $\chi^2_{0.95,4}$ =9.48 (one-sided) Reject the null hypothesis p-value=0.037

Kolmogorov Smirnov test (KS-test)

- Measure how much a pp-plot deviates from a 45 degree line (at maximum)
- Test statistic

$$D = \max_{1 \le i \le n} \left| F(X_{(i)}; \theta) - \frac{i}{n} \right|$$

• $D\sqrt{n}$ is asymptotically Kolmogorov distributed under the null hypothesis (if the parameters are known)

Kolmogorov Smirnov test (KS-test)

- For the temperature data:
 - KS-statistic: 0.090
 - P-value: 0.232
 - We can not reject the null hypothesis

If the data does not fit the distribution?

- Can the data be transformed in any way?
 - Common transforms: logarithm, square root, square, cube
- Change the model or method
 - Assume another distribution of the data
- Remove outliers
- Robust estimation of parameters

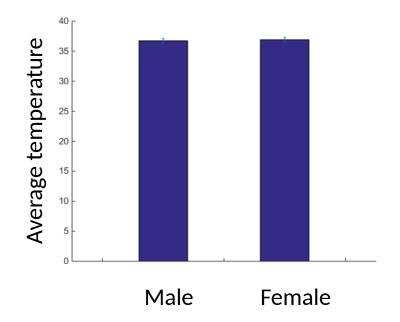
Statistical testing

- Is the mean temperature 37.0 degrees C?
 - H_o: μ =37.0
 - *H*_{*a*}: μ≠37.0

Matlab: [h,p,ci,stats]=ttest(temp,37); t-statistic: -5.38, p-value 3.36*10-7

- Does male and female have the same average temperature?
 - $H_0: \mu_1 = \mu_2$
 - $H_a: \mu_1 \neq \mu_2$

Matlab: [h,p,ci,stats]=ttest2(temp1,temp2);
t-statistic: -2.32, p-value 0.022

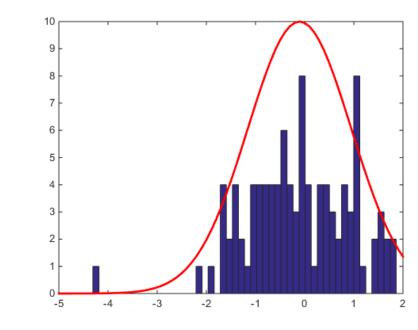


Parameter estimation

- Maximum likelihood estimation
 - Estimate the parameter with the value that maximizes the likelihood of your observations
- Method of moments estimation
 - Express the parameter as a function of distribution moments (E[X], E[X²], E[X³], ...) and estimate expectations with averages

Robust estimation

- Outliers will affect the parameter estimation
 - Example:



- $\widehat{\mu_1} = -0.10$
- $\widehat{\mu_2} = -0.05$ (with the outlier removed)
- Median, alpha-trimmed mean are robust estimators, but less effective

α -trimmed mean

- Remove outliers
- Sort the observations and take the mean of the "middle" observations
- a=0.1

$$\bar{X}_{\alpha} = \frac{X_{(k+1)} + \ldots + X_{(n-k)}}{n-2k}$$
 with $\alpha = \frac{k}{n}$

Further reading

- Read about qq-plots etc. in a Statistics textbook,
- e.g. chapter 10 in Rice, John A. Mathematical Statistics and Data Analysis Third Edition 2007, Brooks/Cole, CENGAGE Learning. ISBN-13-0-495-11868-8

Computer exercise

- Matlab
- R
- No report writing for lab 1
- Pass by showing you answers to Oskar or Rikard during lab sessions (or see instructions on course page if you need to hand-in by mail)