Exercise session 2, Stochastic Calculus Part I.

- **1** Let X be a standard normal r.v.
 - 1. Calculate E[X | X = x].
 - 2. Calculate E[X | X > 0].
 - 3. Calculate E[|X|| X < 0].

2 Let $\{X_t\}_{t\geq 0}$ be a stochastic process with independent Gaussian increments, i.e., for s < t, $X_t - X_s$ is normally distributed and independent of X_u for $u \leq s$. Show that X_t is a Gaussian process.

A stochastic process X_t has independent increments if $X_{t_n} - X_{t_{n-1}}, \ldots, X_{t_2} - X_{t_1}$ are independent, for all $t_1 < t_2 < \ldots < t_n$. X_t has stationary increments if $X_{t+s} - X_s$ does not depend on s. A stochastic process with independent stationary increments is called a *Lévy* process.

- **3** Let X_t and Y_t be independent Lévy processes.
 - a) Is $X_t + Y_t$ a Lévy process?
 - b) Can a Lévy process be a Martingale?
 - c) Let the increments $X_t X_s$ be Normal(0, t s). Calculate $Cov(X_t, X_s)$.
 - d) Simulate and plot a realization of X_t on [0, 1].

4 Let X > 0 be a random variable and $E[X] < \infty$. Show that $E[\max(0, X - n)] \rightarrow 0$ as $n \rightarrow \infty$.

5 Properties (2.16)-(2.27) in Klebaner of conditional expectation.