Exercise session 1, Stochastic Calculus Part I.

1 Let $f(t)=\sin (t)$. Find the variation of f over the interval $[0,2 \pi]$.

Solution. Since f is continuous with continuous derivative, we get $V_{f}([0,2 \pi])=$ $\int_{0}^{2 \pi}\left|f^{\prime}(s)\right| d s=\int_{0}^{2 \pi}|\cos (s)| d s=\int_{0}^{\frac{\pi}{2}} \cos (s) d s+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}-\cos (s) d s+\int_{\frac{3 \pi}{2}}^{2 \pi} \cos (s) d s=$ 4.

2 Show that $V_{g+h}(t) \leq V_{g}(t)+V_{h}(t)$.

Solution. Using the definition of the variation and the triangle inequality, we get $V_{f+g}(t)=\lim _{\delta_{n} \rightarrow 0} \sum_{i=1}^{n}\left|f\left(t_{i}^{n}\right)+g\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right)-g\left(t_{i-1}^{n}\right)\right| \leq \lim _{\delta_{n} \rightarrow 0}\left(\sum_{i=1}^{n} \mid f\left(t_{i}^{n}\right)-\right.$ $\left.f\left(t_{i-1}^{n}\right)\left|+\sum_{i=1}^{n}\right| g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right) \mid\right)=\lim _{\delta_{n} \rightarrow 0} \sum_{i=1}^{n}\left|f\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right)\right|+\lim _{\delta_{n} \rightarrow 0} \sum_{i=1}^{n} \mid g\left(t_{i}^{n}\right)-$ $g\left(t_{i-1}^{n}\right) \mid=V_{f}(t)+V_{g}(t)$ where $0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=t$ and $\delta_{n}=$ $\max _{1 \leq i \leq n}\left|t_{i}^{n}-t_{i-1}^{n}\right|$.

3 If $f(t)=e^{-t}$ and $g(t)=[t]$ (the integer part of t), calculate the Stieltjes integrals $\int_{0}^{\infty} g(t) d f(t)$ and $\int_{0}^{\infty} f(t) d g(t)$.

Solution. Since f^{\prime} exists we get $\int_{0}^{\infty} g(t) d f(t)=\int_{0}^{\infty} g(t) f^{\prime}(t) d t=\int_{0}^{\infty}[t]\left(-e^{-y}\right) d t=$ $\sum_{n=0}^{\infty} \int_{n}^{n+1} n\left(-e^{-t}\right) d t=\sum_{n=0}^{\infty} n\left(e^{-(n+1)}-e^{-n}\right)=\frac{-1}{e-1}$. For the other integral, note that $g(t)=[t]=\sum_{k=0}^{[t]} h(k)$ where $h(0)=0$ and $h(k)=1$ for $k \geq 1$. Hence, $\int_{0}^{\infty} f(t) d g(t)=\sum_{k=0}^{\infty} f(k) h(k)=\sum_{k=1}^{\infty} e^{-k}=\frac{1}{e-1}$

4 Prove Grönwall's lemma.
Solution. Let $R(t)=\int_{0}^{t} h(s) f(s) d s$ and note that R is continuous with $R(0)=0$. We get $R^{\prime}(t)=h(t) f(t) \leq h(t)(g(t)+R(t))$, hence $R^{\prime}(t)-h(t) R(t) \leq$ $h(t) g(t)$. Changing the letter t to s and multiplying both sides with $e^{-\int_{t}^{s} h(u) d u}$ gives $\frac{d}{d s}\left(R(s) e^{-\int_{t}^{s} h(u) d u}\right) \leq h(s) g(s) e^{-\int_{t}^{s} h(u) d u}$. Integrating both sides with respect to s from 0 to t gives $R(t) e^{-\int_{t}^{t} h(u) d u}-R(0) e^{-\int_{t}^{0} h(u) d u} \leq \int_{0}^{t} h(s) g(s) e^{\int_{s}^{t} h(u) d u} d s$. But here, the left hand side equals $R(t)$, completing the proof of Grönwall's lemma.

