Exercise session 3, Stochastic Calculus Part I.

1 Let $X>0$. Show that $\mathrm{E}[X] \leq \sum_{n=o}^{\infty} P(X>n)$.

Solution.

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} x d F_{X}(x)=\sum_{n=0}^{\infty} \int_{n}^{n+1} x d F_{X}(x) \leq\{x \leq n+1, \forall x \in[n, n+1]\} \\
& \leq \sum_{n=0}^{\infty}(n+1) \int_{n}^{n+1} d F_{X}(x)=\sum_{n=0}^{\infty}(n+1)(\mathbb{P}(X \leq n+1)-\mathbb{P}(X \leq n)) \\
& =\sum_{n=0}^{\infty}(n+1)(\mathbb{P}(X \leq n+1)-1+\mathbb{P}(X>n)) \\
& =\sum_{n=0}^{\infty} \mathbb{P}(X>n)+\underbrace{\sum_{n=0}^{\infty}-(n+1) \mathbb{P}(X>n+1)+n \mathbb{P}(X>n)}_{=0, \text { which should be checked. }}=\sum_{n=0}^{\infty} \mathbb{P}(X>n)
\end{aligned}
$$

2 Let B_{t} be a Brownian motion. Show that $X_{t}=c B\left(t / c^{2}\right)$ is a Brownian motion.

Solution. We check only that the variance is $t-s$. The other properties are almost trivially fulfilled. For $t \geq s$ we get that
$\mathbb{V} \operatorname{ar}(Y(t)-Y(s))=\mathbb{V} \operatorname{ar}\left(c\left(B\left(t / c^{2}\right)-B\left(s / c^{2}\right)\right)\right)=c^{2} \operatorname{Var}\left(B\left(t / c^{2}\right)-B\left(s / c^{2}\right)\right)=c^{2}\left(t / c^{2}-s / c^{2}\right)=t-s$.
3 Let B_{t} be a Brownian motion. Show that $e^{-\alpha t} B\left(e^{2 \alpha t}\right)$ is a Gaussian process. Find its mean and covariance functions.

Solution. Since B is a Gaussian process, Y is a Gaussian process. The covariance function is now calculated for $s<t$:
$\rho_{Y}(s, t)=\mathbb{C o v}(Y(s), Y(t))=\mathbb{C o v}\left(e^{-\alpha s} B\left(e^{2 \alpha s}\right), e^{-\alpha t} B\left(e^{2 \alpha t}\right)\right)=\mathbb{E}\left[e^{-\alpha s} B\left(e^{2 \alpha s}\right) e^{-\alpha t} B\left(e^{2 \alpha t}\right)\right]=$
$e^{-\alpha(s+t)} \mathbb{E}\left[B\left(e^{2 \alpha s}\right) B\left(e^{2 \alpha t}\right)\right]=e^{-\alpha(s+t)} \rho_{B}\left(e^{2 \alpha s}, e^{2 \alpha t}\right)=e^{-\alpha(s+t)} \min \left(e^{2 \alpha s}, e^{2 \alpha t}\right)=e^{-\alpha(s+t)} e^{2 \alpha s}=e^{-\alpha|t-s|}$.
We get the same result for the case $s>t$.

4 Let B_{t} be a Brownian motion. Show that the process $e^{-t / 2} \cosh \left(B_{t}\right)$ is a martingale w.r.t. the filtration $\mathfrak{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right)$.

Solution. Let $s>t$. Since B has increments which are independent of the past we get that

$$
\begin{aligned}
\mathbb{E}\left[e^{-s / 2} \cosh B(s) \mid \mathfrak{F}_{t}\right] & =\frac{e^{-s / 2}}{2} \mathbb{E}\left[e^{B(s)}+e^{-B(s)} \mid \mathfrak{F}_{t}\right] \\
& =\frac{e^{-s / 2}}{2} \mathbb{E}\left[e^{B(s)-B(t)+B(t)}+e^{-(B(s)-B(t))-B(t)} \mid \mathfrak{F}_{t}\right] \\
& =\frac{e^{-s / 2}}{2}\left(e^{B(t)} \mathbb{E}\left[e^{B(s)-B(t)} \mid \mathfrak{F}_{t}\right]+e^{-B(t)} \mathbb{E}\left[e^{-(B(s)-B(t))} \mid \mathfrak{F}_{t}\right]\right) \\
& =\frac{e^{-s / 2}}{2}\left(e^{B(t)} \mathbb{E}\left[e^{B(s)-B(t)}\right]+e^{-B(t)} \mathbb{E}\left[e^{-(B(s)-B(t))}\right]\right) \\
& =\left\{\text { Page } 50 \text { in Klebaner: } X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \mathbb{E}\left[e^{u X}\right]=e^{\mu u+\frac{\sigma^{2} u^{2}}{2}}\right\} \\
& \left.=\frac{e^{-s / 2}}{2}\left(e^{B(t)} e^{(s-t) / 2}+e^{-B(t)} e^{(s-t) / 2}\right]\right) \\
& =e^{-t / 2} \cosh B(t)
\end{aligned}
$$

