TMS 165/MSA350 Stochastic Calculus Part I Fall 2010 HandIn Number 1, due 24 September

Task 1. Find a function with infinite variation over a finite interval. (10000 points)

Task 2. Express [f,g] in terms of [f+g] and [f-g]. (10000 points)

Task 3. Explain why the Riemann-Stieltjes integral $\int f \, dg$ defined through (1.19) is not well-defined when $[f, g] \neq 0$. (10000 points)

Task 4. For the function $f : [0,1] \to \{0,1\}$ given by f(x) = 0 for $x \in [0,1] \setminus \mathbb{Q}$ and f(x) = 1 for $x \in [0,1] \cap \mathbb{Q}$ we have $\{x \in [0,1] : f(x) = 1\} \subseteq \bigcup_{i=1}^{\infty} [q_i - 2^{-i}\varepsilon, q_i + 2^{-i}\varepsilon] \equiv L(\varepsilon)$ for each $\varepsilon > 0$ and any enumeration $\{q_i\}_{i=1}^{\infty}$ of $[0,1] \cap \mathbb{Q}$, where the length of $L(\varepsilon)$ is less or equal ε . Find the value of the Lebesgue integral $\int_0^1 f(x) dx$. (10000 points)

Task 5. Prove (2.19). (10000 points)

Task 6. Find $\mathbf{E}\{X | \sigma(Y)\}$ for a standardized (to have zero mean and unit variance) bivariate normal distributed random variable (X, Y) such that X and Y has correlation $\rho \in (-1, 1)$. (10000 points)

All solutions should be motivated.