TMS 165/MSA350 Stochastic Calculus Part I Fall 2010

Exercise Session 4, 24 September
Througout this exercise session B = {B(t) };>0 denotes Brownian motion.

Exercise 1. For two It6 processes X = {X(t)};co,r) and Y = {Y(t) }4c[0,7] the Strat-

onovich integral process { fg X 0Y }iepor) of X wrt. Y is defined as
t t 1
/ Xy = / Xay + 5 [X,Y](t) for t€[0,7]
0 0

(see also Section 5.9 in Klebaner’s book). With this notation, show that df (X(t)) =
(X (t))0X(t) for f two times continuously differentiable.

Solution. First we must agree on what is the exact meaning of the statement we are

challanged to show, that df (X (t)) = f/(X(¢)) X (¢). And that in turn must be that

f@@»—ﬂXwﬂzéfﬂmaX

Now, by the definition of the Stratonovich integral we have

| reoex = [ e+ 5100 X0,
0 0

Here the arguments from Example 4.23 in Klebaner’s book carry over with only obvious

modifications to show that

FE0X)0 = [ 500X, x)
/f aX/f dX+/f” XJ.

But the right-hand side of this in turn equals f(X(¢)) — f(X(0)) by Ito’s formula Theo-

so that

rem 4.16 in Klebaner’s book. (Note that we only require f to be two times continuously
differentiable in this exercise, rather than three times continuously differentiable as is

required in the corresponding Theorem 5.19 in Klebaner’s book.)

Exercise 2. Show that for a process X € Er the following process is a martingale

{([xan) - fxorad



Solution. If we have proved that the above process is a martingale for X € Sp, then

given an X € Ep, we may pick a sequence {X,,}°°; C Sy such that

JLIQOE{/OT(Xn(t) —X(t))zdt} =0

t t
/XndB—>/XdB as n— oo
0 0

and

for t € [0,7] in the sense of convergence in 2. From this in turn we conclude by means

of reapeted use of Holder’s inequality that

{ )2ds — /OtX(s)zds }

{ X, (5) — X(5)) (X (5) + X (5)) ds }

{\// ZdS\// )2ds}

< \/E{ /0 (Xa(5)— X (s >>2ds}\/ B /O (Xalo)+ X ()2 ds |

. ¢E{ /OT(Xn@)_X(SWdSNQE{ [t xtopas) 20 [oxczas)

—0 as n—o

| /\

and similarly using also the isometry property
(L)
_ E{K/O X, dB — /0 XdB) (/O XndBJr/O XdB)'}
R Bl o))
_ \/E{/Ot(Xn(s) —X(s))2ds}\/E{/0t(Xn(s) +X(s))2ds}

— 0 as n— oo,

so that

t t t 2 ¢ 2
/Xn(s)2d3—>/X(s)2ds and </ XndB> — (/XdB) as n— oo
0 0 0 0

for t € [0,7] in the sense of convergence in L'. Hence we may use Exercise 3 of Exer-

cise Seesion 3 together with the assume proven martingale property when X,, € St to



conclude that

E{ (/OthB>2— /OtX(r)2dr ]—'S} <—E{</tXndB>2—/tXn(r)2dr }"s}
(/ X, dB> /X

</0XdB> /X as n— 00

for 0 < s <t <T in the sense of convergence in L!, thereby establishing the requested

martingale property for X € Erp.

Pick a grid 0=ty <t; < ... <t, =T and consider an X € St given by

n—1
X(t) =Ty () mo + > Ly, (B)&  for te[0,T],
i=0
where 7y is Fo-measurable and &; is F;,-measurable for i =0,...,n—1. Recall that

/thB_ Z& (tix1) = B(t:) + &m (B(t) = B(tm)) for t € (tm, tyni1]

0 for t=0
In order to prove the martingale property

o ([[xan) - [oxorar| s} (f[xan) - [oxor

for 0 < s <t <T we may without loss of generality assume that s =t; and ¢ = ¢, for

some 0<j<k<nasthegrid 0=ty <t; < ... <t, =T can otherwise be enriched to

accomodate s and t without affecting the values of

</0th3>2— /0 X(?dr and < /0 stB>2_ /OSX(T)2 i

Here the random variable to the right is Fs-measurable, and therefore simple algebraic

manipulations show that the martingale property to be established holds if

E{ </OtX dB>2—</OsX dB>2— /:X(r)zdr ]-"s}
:E{(/sthB>2+2/OSXdB/:XdB—/:X(r)zdr

=0.

7}

That this identity holds in turn follows from the facts that



Fsp=0

E{/OSXdB /sthB ‘ }"s} = (/OSXdB>§E{§iE{(B(ti+1)—B(ti))\}}i}

and similarly

E{([XdBf fs}

k—1
=S E{€E{(B(tis1) - B(t))*| 7}
i=j

Fs}

+2 Y B{& & (B(ti1) — B(ti) E{(B(ti41) — B(ti,))| Fr,yi } | Fe }

j<iy <iz<k—1

k-1
= ZE{&z (tis1 —t:)*|Fs} +0

= ;%/:X(rﬁdr ]:S}.

It is tempting to try to solve the exercise by means of applying It6’s formula, which

readily gives

</0tX dB>2—/0tX(s)2ds — 2/0t</05X(r) dB(r)> X(s) dB(s).

Here we know that [;X(r)dB(r) and X(s) are both square-integrable. But this only
implies that ( f3 X (r) dB(r)) X(s) is integrable (rather than square-integrable) in gen-
eral, and therefore we cannot conclude that the process on the right-hand side is a
martingale form what we have learned so far.

Exercise 3. Prove It0’s formula Theorem 4.13 in Klebaner’s book.

Solution. We shall prove that for a two times continuously differentiable function f it

holds that

F(B®) = F(BO)) + /O F(BE) dB() + 5 /O F(Br)dr for t>0.

To that end we consider partitions 0 =tg < t; < ... < t, =t of the interval [0,¢] that

becomes finer and finer so that maxj<;<,t; —t;—1 | 0. By Taylor expansion we have

F(B(1) = f(B(0)) =Y f(B(t:)) = f(B(ti-1))
i=1
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i=1

n. rBt)
> / (B(ti)—r) (f"(r) = f"(B(ti-1))) dr.

i—1 7/ B(ti-1)
Here the first term on the right-hand side converges to fg f'(B) dB in probability as f(B)
is a continuous and adapted process. Moreover, recalling that the quadratic variation of
B over an interval equals the length of that interval it follows that the second term on the
right-hand side converges to % fg 1" (B(r))dr by means of introducing a second cruder
grid {#;}",, approximating the value of f”(B(t;-1)) by f"(B(t;_;)) for an appropriate
J, and sending first maxi<j<n t; — t;—1 | 0 and then maxi<j<m, t;- — t;'—1 1 0 afterwards,
as this makes it possible to replace (B(t;) — B(t;_1))? with t; —t;_1 in the first limit
as maxi<;<nt; — ti—1 | 0 and the approximation of f”(B(t;-1))-values by f"(B(t;_;))-
values is accurate in the second limit as maxi<j<m t;- — t;'—1 1 0 by the continuity of

f”(B). Finally, the third term on the right-hand side is bounded by

r,s€[0,T7, \r—s\glréliagnti—ti,l ~_ ti1

sup [f"(B(r) = "(B(s))| En:/B(ti) (B(t;) —r)dr
i=1 B( )

(B(ti) — B(ti—1))?

_ sup (B — f(B() Y

r,s€[0,T],|r—s|< max t;—t;—1 i1
1<i<n =
t
— 0 X —.
2

Exercise 4. One can prove the following important generalization of It6’s formula
Theorem 4.16 in Klebaner’s book: For an It6 process {X(t)}c(o,r) all values of which
belong to an open interval I C R with probability 1 and a two times continuously

differentiable function f: I — R it holds that
1
df (X (1)) = (X)) dX(#) + 5 ["(X(®) d[X, X](t) for t€[0,T].
Use this result to give a detailed proof of Theorem 5.3 in Klebaner’s book.

Solution. Let {U(t)}c[o,r] be a strictly positive [to process with probability 1. Then
we may apply the above mentioned generalized 1t6 formula to the function Y (t) =

log(U(t)) —log(U(0)) to conclude that

avipy = WO 10N

1
Uity 2 Ut

9

5



so that

Ut) d<log<%) + % /Ot dglg?) - U(t)d(Y(t) + % /Ot dgﬁg@) = dU(1).

This means that the It6 process

_ Uy , 1 [tduir)
LU®)) :10g<m> +§/0 o

has stochastic exponential U(t) and therefore is the stochastic logarithm of U(t). By
multiplying both sides of the above equation by 1/U(t) we also see that £(U(t)) obeys

the equation

1
U(t)
(Note that this SDE is not of diffusion type in general.)

dL(U®)) = —— dU(t), L(U(0)) = 0.

Exercise 5. The filtration {#;} that features in the construction of the It integral
process need not necessarily be the filtration {F} generated by B itself, but can
more generally be as in Remark 3.1 in Klebaner’s book. In particular, if {Bj(t)}+>0
and {Bz(t)}+>0 are independent Brownian motions, then we may employ the filtration
{Fi}is0 given by F; = o(FP', FP) for t >0 to be able to simultaneuously consider It6
integral process (and therefore also SDE) with respect to both By and Bs.

The Nobel prize awarded Black-Scholes-Merton SDE

dX(t) =r X(t)dt + o X(t)dB(t) for t>0, X(0)=uzo,

for future values { X (¢) }+~0 of a financial asset with an uncertain rate of return might be
generalized to a model that can much more accurately model real worls financial assets,
such as e.g., stock prices as follows: With the notation from the previous paragraph,

consider the SDE (not in general of diffusion type)
dX(t)=rX(t)dt+ o(t) X(t)dBi(t) for t>0, X(0)=uwo,

where the constant so called volatility parameter o € R of the Black-Scholes-Merton
SDE has been replaced with a random volatility process {o(t)};>¢ that can model a
market that features a time variable uncertainty for the rate of the return. Solve this

more general SDE when the volatility process {o(t)}+>0 is given by the SDE

do(t) = —a X(t)dt + fdBsy(t) for t>0, o(0)=o0g,



where a, 3 > 0 are positive real constants (as is 7).

Solution. Identifying X as a stochastic exponential we get

X(t) = g exp{rt _ % /Ota(s)zds + /Oto(s) dBl(s)} for ¢ >0

(see the upper part of page 131 in Klebaner’s book), where o in turn is recognized as

the solution to a Langevin type SDE

o) = expf - [ a(s) ish(ons | p{ [atarbasae) or 20

(see the lower part of page 127 and the upper part of page 132 in Klebaner’s book).

Exercise 6. Solve the SDE
dX(t) = < 1+ X ()2 + @) dt + /1+ X (t)2dB(t) for t>0, X(0)=0.

Solution. First notice that all conditions of Theorem 5.4 in Klebaner’s book are
satisfied, so that it is clear that the SDE has a well-defined and unique solution. Now,
employing divine inspiration we readily arrive at the idea to try the transformation
Y (t) = sinh ' (X(¢)). By an application of It6’s formula Theorem 4.16 in Klebaner’s

book we then get

B 1 X(t)

dY (t) = NiES- O dx(t) - ESOBEE d[X, X](t)
P (U __ XM
=dt+ X0 dt + dB(t) 2mdt
= dt + dB(t),

with the obvious solution Y(¢) = t + B(t) [remembering that Y (0) = 0]. Hence the
solution to the SDE must be X (t) = sinh(t+ B(t)). That this process X really solves
the SDE is also easy to check by means of direct calculations using It6’s formula Theorem

4.18 in Klebaner’s book together with the hyperbolic unit formula.



