TMS 165/MSA350 Stochastic Calculus Part I Fall 2010

Exercise Session 5, 1 October
Througout this exercise session B = {B(t) };>0 denotes Brownian motion.

Exercise 1. Show that

X(t)y=e™ <\/L2_oz (B(e**)—B(1)) + x()) for t>0

is an Ornstein-Uhlenbeck process in the sense that it got the same distributional prop-

erties (finite dimensional distributions) as the solution

{X(t)} o = {e_at <ZE0 +o /Otem dB(r)> }t>0

to the Langevin SDE
dX(t) = —aX(t)dt +o0dB(t) for t>0, X(0)=um,

where a, 0 >0 and zg € R are constants.

Solution. As both the above X processes are Gaussian they have the same finite
dimensional distributions if their mean and covariance functions agree. Here we clearly
have E{X ()} = e *'x( for ¢t > 0 for both the X processes. Further, we have

2

Cov{X(s),X(t)} = ;’—a e~ () Cov{ B(e**) — B(1), B(e**) — B(1)}
_ 0_2 e—oe(s-‘,—t) (6204 min{s,t} 1—14 1)
2c
o t t
= — (e_a‘s_ | golst )) for s,t>0
2a

for the first X process, while Theorem 4.11 in Klebaner’s book shows that
min{s,t}

0.2
20T p — Z (e—a|s—t\ - e—a(s—l—t))
2a

Cov{X(s),X(t)} = o* e_a(SH)/
0
for s,t > 0 for the second X process.

Exercise 2. Use the expression for an Ornstein Uhlenbeck process expressed in terms
of B from Exercise 1 to find the transition density function for the solution to the

Langevin SDE (the Ornstein Uhlenbeck process).



Solution. We have

X(ts) —a(t+s><L
(t+s)=e Toa

_ ealths) g 4 \/%_a e~ ((B(e24) — B(e™)) + (B(e™) — B(1)))

(B(eza(t+s)) ~B(1)) + 960)

_ 02-a e—a(t—l—s) (B(e2a(t+s)) o B(e2a3)) + e_atX(S),
where
g

— e—a(t—i—s) (B(e2a(t+s)) _ B(e2058))

is an N(0, (6%/(2a)) (1—e2°*))-distributed random variable independent of {X (r)},<s.
It follows that (X (t+5)|X(s)=x) is N(e™*z, (02 /(2c)) (1—e~2**))-distributed, so that

Vo Xp{ a(y—we‘“t)Q}

) (1—e—2at)

d
py,t+s,z,5) = d—yp(y’HSv"Evs) = T(_e 2o

for t+s>s>0 and z,y € R.
Exercise 3. Solve the Stratanovich SDE
dX(t) = —adt+o0X(t)0B(t) for t>0, X(0)=umx,

where a, 0 >0 and zg € R are constants.

Solution. By Theorem 5.20 in Klebaner’s book the above SDE is equivalent to the 1t
SDE
dX(t)= (30X (t) —a)dt + o X(t)dB(t) for t>0, X(0)= .

This in turn is a rather simple form of the linear SDE treated in Section 5.3 in Klebaner’s

book, with a solution given by (5.25) together with (5.30) in Klebaner’s book as

X(t) =U(t) <:co —a /O t %) where U(t) = e7B®),

which is to say that

¢
X(t) = zge”BO — 7B / e B6) ds  for t>0.
0

Exercise 4. The CKLS (Chan-Koralyi-Longstaff-Sanders) SDE is given by

dX(t) = (a+BX () dt + o X(t) dB(t) for t>0, X(0)=ao,



where a,0,7v,29 > 0 and 8 € R are constants. This SDE is used in contemporary
mathematical finance research as a model for, e.g., interest rates and/or deseasonalized
eletricity prices, and is famous for being very hard to do inference for and very hard to

simulate when v > 1. Determine the stationary distribution for this SDE when it exists.

Solution. First note that the fact that a,zg > 0 ensures that the solution is strictly
positive when it exists. From formula (6.69) in Klebaner’s book we further see that the

stationary probability density function is given by

m(x) 1 eXp{/dey} for © >0,
1

C x2 o2 y2~/

whenever this function can be normalized to become a density, that is, whenever

> 1 T2(a+Ly)
C’:/O ﬁexp{/l Ty%dy dx < oo.

The issue whether C' is finite or not in turn clearly boils down to check the integrability

properties of the function

1 z9
f@)= exp{ /1 7(2‘2226” dy}

as x ] 0 and as x T co. Now, as = | 0 we see that
Crz=2 for v€(0,1/2),
f(x) ~ Cy p2e/o®=1 for v=1/2,
C3z~ % exp{—(20/(0?(2y—1)))z= "D} for v>1/2,

where C1,Cy, C3 > 0 are constants. This is to say that we always have the integrability

required as x | 0. When z T oo we further see that

7

Chz™2 for v>1,
Oz~ 228/ for v=1,
fx) ~ Coz~*Texp{(8/(0?(1-7)))z* 7} for v €(1/2,1),
Cr22/7° L exp{(283/0?) )} for y=1/2,
Csz=*Texp{(8/(0?(1=9))) 2>~ + (2a/ (0% (1-27)))z' =7} for v €(0,1/2),

where Cy, ..., Cs > 0 are constants. This is to say that we have the integrability required

when

v>1 and y=1,28<0? and ~y€(1/2,1), <0 and ~€(0,1/2], 8<0.



Exercise 5. Exercise 6.10 in Klebaner’s book.

Solution. See the solution on page 397 in Klebaner’s book.

Exercise 6. Let X be a standard normal distributed random variable. Show how
X can be made to have any given probability density function f : R — [0,00) by
means of a change of probability measure. Also, if X has probability density function
f:R—10,00), is it possible to make X have standard normal distributed by a change

of probability measure?

Solution. Clearly X has probability density function f under the probability measure
Q(4) = / FX)V2reX2dP  for A€ F,
A

as this gives

Q{X € B} = Eq{/(xeny }
:EP{I{XEB}f(X) \/ﬁe)@p}
_ - x2/2 1 —z2/2
—/RIB(x)f(x)\/2_e me dx

:/f(ac)dx for BCR.
B

If X instead has a strictly positive probability density function f:R — (0,00) from the

beginning, then X is standard normal distributed under the probability measure

1 2 1
A :/—e_X 2_—_dP for A€ F,
Q) ANV2T f(X)

as this gives
Q{X € B} = Eq{I{xen} }

1 2 1
CBpd Iy e X /2_}
P{ {XeB} Twe f(X)

= x ! e_mz/2L ) dx
1

:/Te_mz/zdaf; for BCR.
B V2T

If f is not strictly positive, then it is not possible to make X standard normal distributed

by means of this approach, as we then have



Q{Q} = Eq{l}

1 2 1

—x2/2

= ——e —— f(x)dx
/{meR:f(gc)>0} Varm f(z) (@)

1 2
—x?/2
= —e dx
/{mGR:f(w)>0} V2w

<1,

so that Q is no longer a probability measure.



