
TMS 165/MSA350 Stochastic Calculus Part I Fall 2010

Selection from Klebaner’s Book for Lectures 1-11

Lecture 1, 30 August

Chapter 1

Section 1.2

Equations 1.7-1.9 [we use (1.9) instead of (1.7) although (1.9) is more general].

The notation Vg(t) and the fact that this is a non-decreasing function.

Example 1.4.

Example 1.5.

Example 1.6.

Theorem 1.6.

Equation 1.13.

Theorem 1.10.

Equation 1.15.

Theorem 1.11.

Theorem 1.12.

Equation 1.17.

Section 1.3

Equations 1.18 and 1.19.

The “Particular Cases” on top of page 11.

The integration by parts formula on last row of page 12.
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Lecture 2, 1 September

Chapter 2

Section 2.2

The definition of σ-field on page 28.

The definition of probability on page 29.

The definition of random variable on page 30.

Example 2.8.

The definition of σ-field generted by random variable on page 31.

Section 2.3

The first formula for E{X} of Section 2.3.

The definition of Lebesgue integral on page 33.

Equation 2.6.

The properties 1-3 of expectation on page 35.

Section 2.4

Theorems 2.16-2.18.
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Lecture 3, 6 September

Sections 2.1 and 2.2

The definition of σ-field of events.

Example 2.1.

The definition of filtration.

Definition 2.1.

The definition of σ-field generated by random variable.

The definition of filtration generated by stochastic process.

Section 2.8

Definition 2.30.

Section 2.7

Everything from “General Conditional Expectation” up to and including Theorem 2.24.
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Lecture 4, 8 September

Chapter 3

Section 3.1

The definition of BM - note the unspecificness of the value for B(0).

Example 3.2.

Equation 3.3.

Equation 3.4 without proof.

The notation Bx and Equation 3.5.

Definition 3.1 applied to BM.

Figure 3.1.

The definition of Gaussian process.

BM is a Gaussian process.

Definition 3.2.

Theorem 3.3.

Example 3.4.

Section 3.2

Quadratic variation of BM.

Properties of Brownian paths.

Section 3.3

Begin treatment of Theorem 3.7.
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Lecture 5, 13 September

Section 3.3

Finish treatment of Theorem 3.7.

Section 3.4

Definition 3.8.

Theorem 3.9.

The transition probability.

(Stopping times we will introduce later when they are needed.)

Section 3.5-3.14

This material is not included in the course.

Chapter 4

Definition 2.11.

Definition 2.12.

Theorem. (Cauchy criterion) A sequence {Xn}
∞
n=1 of random variables converges

in probability to some random variable X if and only if

lim
m,n→∞

P
{

|Xn−Xm|> ε
}

= 0 for each ε > 0.

Definition 2.13.

Definition 2.14.

Theorem. (Cauchy criterion) A sequence {Xn}
∞
n=1 of random variables such that

E{|Xn|
r} < ∞ for all n converges in L

r to some random variable X if and only if

lim
m,n→∞

E
{

|Xn−Xm|r
}

= 0.
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Sections 4.1 - 4.2

Definition 4.2 - we use ST to denote the class of simple adapted processes {X(t)}t∈[0,T ].

The Itô integral process {
∫ t

0 X dB}t∈[0,T ] for X ∈ ST given by Equation 4.4.

Properties of the Itô integral process for ST - we include the martingale property The-

orem 4.7 as well as continuity and adaptedness of the integral process already here.

Definition. The class ET consists of all adapted processes {X(t)}t∈[0,T ] that satisfies

E

{
∫ T

0
X(t)2 dt

}

< ∞.

Theorem. For X ∈ET there exists a sequence {Xn}
∞
n=1 ⊆ ST such that

lim
n→∞

E

{
∫ T

0
(Xn(t)−X(t))2 dt

}

= 0.

Theorem and Definition. For X ∈ ET the Itô integral process {
∫ t

0 X dB}t∈[0,T ] is

well-defined and defined as a limit in the sense of convergence in L
2 of

∫ t

0 Xn dB as

n→∞ for each t∈ [0, T ], where {Xn}
∞
n=1 ⊆ ST are as in the previous theorem
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Lecture 6, 15 September

Definition. The class ET consists of all adapted processes {X(t)}t∈[0,T ] that satisfies

E

{
∫ T

0
X(t)2 dt

}

< ∞.

Theorem. For X ∈ET there exists a sequence {Xn}
∞
n=1 ⊆ ST such that

lim
n→∞

E

{
∫ T

0
(Xn(t)−X(t))2 dt

}

= 0.

Proof when X is continuous1. Given X ∈ET and ε > 0 we need to prove that

E

{
∫ T

0
(Y (t)−X(t))2 dt

}

≤ ε for some Y ∈ ST .

To that end let

X(N)(t) =



















−N if X(t) < −N

X(t) if |X(t)| ≤ N

N if X(t) > N

.

Since X(N)(t)−X(t) → 0 as N →∞ with (X(N)(t)−X(t))2 ≤ X(t)2 we then have

E

{
∫ T

0

(

X(N)(t)−X(t)
)2

dt

}

→ 0 as N →∞

(by dominated convergence Theorem 2.18 in Klebaner’s book as X ∈ ET ). Using the

elementary inequality (x + y)2 ≤ 2x2 + 2 y2 it follows that it is enough to prove that

given X ∈ET , ε > 0 and N ∈ N we have

E

{
∫ T

0

(

Y (t)−X(N)(t)
)2

dt

}

≤ ε for some Y ∈ ST .

But as X(N) is uniformly continuous over [0, T ] (since X is uniformly continuous over

[0, T ]) we have that Z(n) ∈ ST given by

Z(n)(t) = I{0}(t)X
(N)(0) +

n−1
∑

i=0

I(ti,ti+1](t)X
(N)(ti) for t∈ [0, T ]

(where 0 = t0 < t1 < . . . < tn = T as usual) satisfies

sup
t∈[0,T ]

∣

∣Z(n)(t)−X(N)(t)
∣

∣ ≤ sup
s,t∈[0,T ], |s−t|≤ max

1≤i≤n

ti−ti−1

∣

∣X(N)(s)−X(N)(t)
∣

∣ → 0

1The proof for a general not necessarily continuous X is exceptionally difficult and is not really

required by us as we will later restrict ourselves to continuous X’es only
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as max1≤i≤n ti−ti−1 ↓ 0. In particular Z(n)(t)−X(N)(t) → 0 as max1≤i≤n ti−ti−1 ↓ 0

with (Z(n)(t)−X(N)(t))2 ≤ 4N2, so that

E

{
∫ T

0

(

Z(n)(t)−X(N)(t)
)2

dt

}

→ 0 as max
1≤i≤n

ti−ti−1 ↓ 0

(by dominated convergence Theorem 2.18 in Klebaner’s book). Hence we may pick

Y = Z(n) for n large enough to make max1≤i≤n ti−ti−1 small enough.

Theorem and Definition. For X ∈ ET the Itô integral process {
∫ t

0 X dB}t∈[0,T ] is

well-defined and defined as a limit in the sense of convergence in L
2 of

∫ t

0 Xn dB as

n→∞ for each t∈ [0, T ], where {Xn}
∞
n=1 ⊆ ST are as in the previous theorem.

Proof. We have to show that {
∫ t

0 Xn dB}∞n=1 is a Cauchy sequence in L
2. But this

follows from the isometry property for the Itô integral for ST as

E

{(
∫ t

0
Xn dB −

∫ t

0
Xm dB

)2}

= E

{(
∫ t

0
(Xn −Xm) dB

)2}

= E

{
∫ t

0
(Xn(t)−Xm(t))2 dt

}

≤ 2E

{
∫ t

0
(Xn(t)−X(t))2 dt

}

+ 2E

{
∫ t

0
(X(t)−Xm(t))2 dt

}

→ 0 as m,n→∞.

We must also show that if also {X̂n}
∞
n=1 ⊆ ST satisfies

lim
n→∞

E

{
∫ T

0
(X̂n(t)−X(t))2 dt

}

= 0,

so that
∫ t

0 X̂n dB converges in L
2 to some limit

∮ t

0 X dB as n → ∞ (by what we have

just proven), then
∫ t

0 X dB =
∮ t

0 X dB. However, this follows from noting that

E

{(
∫ t

0
X dB −

∮ t

0
X dB

)2}

= lim
n→∞

E

{(
∫ t

0
Xn dB −

∫ t

0
X̂n dB

)2}

≤ 2 lim
n→∞

E

{
∫ T

0

(

Xn(t)−X(t)
)2

dt

}

+ 2 lim
n→∞

E

{
∫ T

0

(

X(t)− X̂n(t)
)2

dt

}

= 0.
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Properties of the Itô integral process for ET are exactly the same as those for ST

Definition. The class PT consists of all adapted processes {X(t)}t∈[0,T ] that satisfies

P

{
∫ T

0
X(t)2 dt < ∞

}

= 1.

Theorem. For X ∈PT we have in the sense of convergence in probability

∫ T

0
(Xn(t)−X(t))2 dt → 0 as n→∞ for some sequence {Xn}

∞
n=1 ⊆ ET .

Theorem and Definition. For X ∈ PT the Itô integral process {
∫ t

0 X dB}t∈[0,T ] is

well-defined and defined as a limit in the sense of convergence in probability of
∫ t

0 Xn dB

as n→∞ for each t∈ [0, T ], where {Xn}
∞
n=1 ⊆ET are as in the previous theorem.

Theorem. A continuous and adapted process {X(t)}t∈[0,T ] belongs to PT and satisfies

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
X dB −

∫ t

0

n
∑

i=1

X(ti−1)I(ti−1,ti] dB

∣

∣

∣

∣

→ 0 in probability

for partitions 0 = t0 < t1 < . . . < tn = T of [0, T ] such that max1≤i≤n ti − ti−1 ↓ 0.

Properties of the Itô integral process for PT are the same as those for ET , except that

the properties zero-mean, martingale and isometry need no longer hold.

Example 4.2.

Example 4.5.

Theorem 4.9.

Section 4.3

Theorem 4.11.

Example 4.10.
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Lecture 7, 20 September

Section 4.4

Theorem 4.13.

Example 4.12.

Example 4.13.

Section 4.5

Definition of Itô process (not same thing as Itô integral process) and stochastic differ-

ential.

Example 4.14.

Example 4.15.

Equation 4.42.

Integral wrt. Itô process.

Section 4.6

Theorem 4.16.

Example 4.20.

Example 4.23.

Theorem 4.17.

Theorem 4.18.

Example 4.26.
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Lecture 8, 24 September

Chapter 5

Section 5.1

The ODE paragraph on bottom of page 123.

The SDE paragraph on top of page 126 all the way down to (not including) Example

5.3.

Example 5.5 and Example 5.3 as a special case there of.

Example 5.6.

Section 5.2

Definition of stochastic exponential on bottom of page 128.

Theorem 5.2.

Definition of stochastic logarithm on top of page 130.

Theorem 5.3. (The detailed proof is given in Exercise Session 4.)

Example 5.10.

Section 5.3

Equation 5.22 is solved by (5.30) together with (5.25), but omit the details of the

verification of this fact until possibly needed later.

Obtain the solution Equation 5.32 to the Langevin equation (5.31) from Equation 5.22.

Section 5.4

Theorem 5.4. (A proof of this result is more or less included in the theory for numerical

solutions of SDE covered during Lectures 12 and 13.)

Theorem 5.5.

Note that Theorems 5.4 and 5.5 only give sufficient conditions for existence and unique-

ness of strong solutions to SDE, but that many a specific SDE may feature such existence
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and uniqueness without these sufficient conditions being satisfied as they are in fact very

far from necessary.

Example 5.12.
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Lecture 9, 27 September

Section 5.5

The Markov property Equation 5.41.

The transition probability Equation 5.42.

Theorem 5.6, with a motivation from the Euler scheme.

We will se a lot more on this in Lectures 12-13 on numerical mathods as well as in

Lecture 14 about applications.

Section 5.6

Definition 5.8.

Definition 5.9.

Example 5.5.

Section 5.7

Theorems 5.10 and 5.11 as examples of such theorems.

The genarator Ls defined by Equation 5.50.

Definition 5.12.

Theorem 5.13 with soft proof.

Example 5.17.

Section 5.8

Definition 5.14, Theorem 5.15 and Theorem 5.16 stripped of all the technicalities.

Section 5.9

Equation 5.65.

Definition 5.17.

Theorem 5.18.

Theorem 5.19. (A detailed proof under weaker conditions is given in Exercise Session

4.)
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Theorem 5.20.

Chapter 6

Section 6.1

The genarator Lt defined by Equation 5.2.

Theorem 6.2 with soft proof.

Corollary 6.4.

Example 6.2.
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Lecture 10, 27 September

Section 6.2

Theorem 6.8.

Section 6.3

Definition of time homogeneous SDE in Equation 6.25.

Theorem 6.13.

Corollary 6.14.

Example 6.8.

Section 6.6

Definition 6.22.

Theorem 6.23.

Corollary 6.24.

Section 6.7

Definition 6.26.

Theorem 6.27.

Corollary 6.28.

Section 6.9

Equations 6.66-6.69.

Example 6.15.

Example 6.16.

Chapter 10

Section 10.2

Theorem 10.4.
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Theorems 10.2 and 10.3 as special cases of Theorem 10.4.

Example 10.1. (A task of this type will feature on HandIn 5.)
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Lecture 11, 4 October

Section 10.2

Everything except Example 10.3.

Section 10.3

Everything on page 275.

Equations 10.31-10.35 from the subsection “Change of Drift in Diffusions”.

Theorems 10.15 and 10.16 as special cases of change of drift in diffusions.

Section 10.6

Everything from the subsection “Likelihood Ratios for Diffusions”
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