TMS 165/MSA350 Stochastic Calculus Part I Fall 2011 Home exercises for Chapter 4 in Klebaner's book

Througout this set of exercises $B = \{B(t)\}_{t \ge 0}$ denotes Brownian motion.

Task 1. Show that a sequence $\{X_n\}_{n=1}^{\infty}$ of random variables such that $\mathbf{E}\{X_n^2\} < \infty$ for all *n* converges in \mathbb{L}^2 to some random variable *X* if and only if the limit $\lim_{m,n\to\infty} \mathbf{E}\{X_mX_n\}$ exists.

Task 2. Show the isometry property Equation 4.12 in Klebaner's book for the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ for $X \in E_T$, e.g., using that the property holds for $X \in S_T$ [cf. Equation 4.5 in Klebaner's book].

Task 3. Show that for an $X \in P_T$ we have in the sense of convergence in probability

$$\int_0^T (X_n(t) - X(t))^2 dt \to 0 \quad \text{as } n \to \infty \quad \text{for some sequence } \{X_n\}_{n=1}^\infty \subseteq S_T,$$

and that the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ is well-defined as a limit in the sense of convergence in probability of $\int_0^t X_n \, dB$ as $n \to \infty$ for $t \in [0,T]$.

Task 4. Show that for a process $X \in P_T$ we have

$$\mathbf{P}\left\{\int_0^T X(t)^2 dt = 0\right\} = 1 \iff \mathbf{P}\left\{\int_0^t X dB = 0\right\} = 1 \quad \text{for } t \in [0, T].$$

Task 5. Find stochastic processes $\{X(t)\}_{t\in[0,1]}$, $\{Y(t)\}_{t\in[0,1]}$ and $\{Z(t)\}_{t\in[0,1]}$ that belong to E_1 , $P_1 \setminus E_1$ and P_1^c , respectively.

Task 6. Apply Itô's formula Theorem 4.17 in Klebaner's book to f(X(t), Y(t)) where $f : \mathbb{R}^2 \to \mathbb{R}$ is given by f(x, y) = g(x) y for a two times continuously differentiable function $g : \mathbb{R} \to \mathbb{R}$ and X = Y = B. Compare with what you get from applying the integration by parts formula Equation 4.57 in Klebaner's book with X = g(B) and Y = B. Derive from the comaprison a new proof (without any explicit calculations other than applications of Itô's formula) of the property established in Example 4.23 in Klebaner's book that $[g(B), B](t) = \int_0^t g'(B(s)) ds$ for $t \ge 0$.