TMS 165/MSA350 Stochastic Calculus Part I Fall 2011
Exercise session 2

Exercise 1. Prove Equations 2.17 and 2.21 in Klebaner’s book for conditional expec-
tations.

Solution. It is an easy exercise to see that any constant random variable (that is, a
non-random random variable) is measurable wrt. the trivial o-field {0, 2}. In particular,

E{X} is {0, Q}-measurable. Further we have

/@E{X}dP =0= /@XdP and /QE{X} dP = P{Q} E{X} = E{X} = /QXdP.

Hence E{ X} fulfill the defining properties on page 44 in the book of being the conditional
expectation E{X [{(),Q}}. This establishes (2.17).

As for (2.21), as E{X} is {0, Q}-measurable it is measurable wrt. any other o-field
G C F (as any such G must contain {(),Q2}). For X independent of G we further have

/ X dP = B{IsX} = B{I.} E{X} = P{A} E{X} = / E{X}dP for A€G.
A A
Hence E{X} fulfill the defining properties of being the conditional expectation E{X |G}.

Exercise 2. Consider a finite sample space Q = {1,...,2n} equipped with the o-field
F consisting of all subsets of ) together with the uniform probability measure P on €2
assigning probability 1/(2n) to each outcome w € 2. Calculate E{X |G} for the random
variable X (w) = w and the o-field G = {0, A, A°,Q} where A ={1,...,n}.

Solution. From intuitive reasoning we come up with the hypothesis that

(n+1)/2 for we A
E{X |G} = .
(3n+1)/2 for we A°

That this really is correct follows from the fact that this random variable is G-measurable

and that by elementary calculations together with the uniformity of P it satisfies

/E{X|g}dP:/XdP for B € {0, 4, A°,Q}.
B B

Exercise 3. Show that among all zero-mean stochastic processes { X (¢) };>0 with finite

second moments E{X (t)?} < oo for ¢ >0, the class of martingales contain all processes



with independent increments and are all included among processes with uncorrelated

increments.

Solution. For X zero-mean with independent increments we have
E{X(0)F}} = E{X({)-X(s)| F'} + E{X(s)| 7'} = E{X (1) = X ()} + X(5) = X(s)

for s <t, where we use the independent increments and (2.21) together with the fact
that X is adapted to the o-field {F;% };>0. Hence X is a martingale.

On the other hand, for X a zero-mean martingale we have
E{(X (u) =X (1) (X(s)=X(r))} = B{E{(X (u) - X (#)) (X(s) - X (r) | 7" } }
= E{(X(s)=X(r)) E{X (u) =X ()| F* }}
=E{(X(s)-X(r)) (X(s)—X(s))}
=0
for 0 <r < s <t <u, where we made use of Equation 2.20 in Klebaner’s book and the

fact that X is adapted together with Equation 2.18 and the martingale property.

Exercise 4. Prove Equation 3.4 in Klebaner’s book. (Note that it is assumed that

0<t1 < ... <ty in this formula.)

Solution. We prove (3.4) by induction. Note that the property (3.4) when n =1 is
just (3.3), which in turn is a rather elementary formula we proved during Lecture 4.

Now assume that (3.4) holds for n = k. Note that (3.4) for n =k in turn means that
(B*(t1), ..., B*(t;)) has probability density function

k
f(Bz(tl),...7Bz(tk))(y17 o 7yk) =Py (.Z', yl) Hpti—ti—l(yi—la yl) fOI' (y17 .. 7yk) € Rk
i=2
For the case when n = k+1 it therefore follows from conditioning on the value (y1,. .., yx)

of (B*(t1),...,B*(tx)) and using independence of increments that

k+1
P{ (5t <ai}
i=1
Tl Tk
:/ / P{B*(tg+1) =B (tr) +yr < Tpy1} fBe(tr),... B (1) (Y15 - -+ Uk) dy1 - - . dyp,
o T Ty — Yk u
=/ / @<7> pe (@, 90) [T Pmtes (i1, 90) dyn - dy
o —o U1 — 1k o
z1 Tk Th41 k+1
=/ / / i (@, 90) [ pri—tis (Gim1,w) dyr - dyres
—00 —o00 J —00 i—92
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[as B¥(tgs1)— B*(tg) is N(0, tx11 —tx)-distributed]|. This proves (3.4) by induction.

Exercise 5. Let £ and n be independent standard normal random variables. Show
that the process {X(t)}iecq0,1) given by X(0) = sign(n) & and X(1) = sign(§) 7 is not

Gaussian despite each of the process values X (0) and X (1) are standard Gaussian.

Solution. It is an elementary exercise to see that X (0) and X (1) are standard Gaussian

(normal) distributed. Also note that

X(0) X(1) = sign(n) & sign(§)n = [¢]|n| = 0.

However, if (X(0), X (1)) were bivariate standard Gaussian (as it must be if X is a
Gaussian process), then the above non-negativity is possible if and only if X (0) and

X (1) have perfect correlation 1. But this is not true as

2
Corr{X(0), X (1)} = Cov{X(0), X (1)} = B{X(0)X (1)} = B{|¢|In]} = (B{|¢[})* =~ <1
by elementary calculations [where we used that X (0) and X (1) are standard Gaussian].

Exercise 6. Prove that the finite dimensional distributions of a zero-mean Gaussian
stochastic process { X (t) }ter are completely characterized by the covariance function of

the process.

Solution. Given ty,...,t, € T, the distribution of the random variable (X (¢),...,

X(t,)) is determined by its characteristic function (Fourier transform)
E{eiZ}L:lan(tj)} for (a1,...,a,) € R".

As Z;’L:1 a; X (t;) is a univariate zero-mean Gaussian random variable, that character-

istic function in turn is equal to

exp [—%Var{élajxaj)}] — exp [—% é él ara; Cov{X (1), X (t)} |,

which in turn obviously is determined by the covariance function of X.



