TMS 165/MSA350 Stochastic Calculus Part I Fall 2011

Exercise session 4

Througout this exercise session $B=\{B(t)\}_{t \geq 0}$ denotes Brownian motion.

Exercise 1. For two Itô processes $X=\{X(t)\}_{t \in[0, T]}$ and $Y=\{Y(t)\}_{t \in[0, T]}$ the Stratonovich integral process $\left\{\int_{0}^{t} X \partial Y\right\}_{t \in[0, T]}$ of X wrt. Y is defined as

$$
\int_{0}^{t} X \partial Y \equiv \int_{0}^{t} X d Y+\frac{1}{2}[X, Y](t) \quad \text { for } t \in[0, T]
$$

(see also Section 5.9 in Klebaner's book). With this notation, show that $d f(X(t))=$ $f^{\prime}(X(t)) \partial X(t)$ for f two times continuously differentiable.

Solution. First we must agree on what is the exact meaning of the statement we are challanged to show, that $d f(X(t))=f^{\prime}(X(t)) \partial X(t)$. And that in turn must be that

$$
f(X(t))-f(X(0))=\int_{0}^{t} f^{\prime}(X) \partial X
$$

Now, by the definition of the Stratonovich integral we have

$$
\int_{0}^{t} f^{\prime}(X) \partial X=\int_{0}^{t} f^{\prime}(X) d X+\frac{1}{2}\left[f^{\prime}(X), X\right](t)
$$

Here the arguments from Example 4.23 in Klebaner's book carry over with only obvious modifications to show that

$$
\left[f^{\prime}(X), X\right](t)=\int_{0}^{t} f^{\prime \prime}(X) d[X, X]
$$

so that

$$
\int_{0}^{t} f^{\prime}(X) \partial X=\int_{0}^{t} f^{\prime}(X) d X+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(X) d[X, X] .
$$

But the right-hand side of this in turn equals $f(X(t))-f(X(0))$ by Itô's formula Theorem 4.16 in Klebaner's book. (Note that we only require f to be two times continuously differentiable in this exercise, rather than three times continuously differentiable as is required in the corresponding Theorem 5.19 in Klebaner's book.)

Exercise 2. Show that for a process $X \in E_{T}$ the following process is a martingale

$$
\left\{\left(\int_{0}^{t} X d B\right)^{2}-\int_{0}^{t} X(s)^{2} d s\right\}_{t \in[0, T]}
$$

Solution. If we have proved that the above process is a martingale for $X \in S_{T}$, then given an $X \in E_{T}$, we may pick a sequence $\left\{X_{n}\right\}_{n=1}^{\infty} \subseteq S_{T}$ such that

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left\{\int_{0}^{T}\left(X_{n}(t)-X(t)\right)^{2} d t\right\}=0
$$

and

$$
\int_{0}^{t} X_{n} d B \rightarrow \int_{0}^{t} X d B \quad \text { as } n \rightarrow \infty
$$

for $t \in[0, T]$ in the sense of convergence in \mathbb{L}^{2}. From this in turn we conclude by means of reapeted use of Hölder's inequality that

$$
\begin{aligned}
& \mathbf{E}\left\{\left|\int_{0}^{t} X_{n}(s)^{2} d s-\int_{0}^{t} X(s)^{2} d s\right|\right\} \\
= & \mathbf{E}\left\{\left|\int_{0}^{t}\left(X_{n}(s)-X(s)\right)\left(X_{n}(s)+X(s)\right) d s\right|\right\} \\
\leq & \mathbf{E}\left\{\sqrt{\int_{0}^{t}\left(X_{n}(s)-X(s)\right)^{2} d s} \sqrt{\left.\int_{0}^{t}\left(X_{n}(s)+X(s)\right)^{2} d s\right\}}\right. \\
\leq & \sqrt{\mathbf{E}\left\{\int_{0}^{t}\left(X_{n}(s)-X(s)\right)^{2} d s\right\}} \sqrt{\mathbf{E}\left\{\int_{0}^{t}\left(X_{n}(s)+X(s)\right)^{2} d s\right\}} \\
\leq & \sqrt{\mathbf{E}\left\{\int_{0}^{T}\left(X_{n}(s)-X(s)\right)^{2} d s\right\}} \sqrt{2 \mathbf{E}\left\{\int_{0}^{T}\left(X_{n}(s)-X(s)\right)^{2} d s\right\}+2 \mathbf{E}\left\{\int_{0}^{T}(2 X(s))^{2} d s\right\}} \\
\rightarrow & 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

and similarly using also the isometry property

$$
\begin{aligned}
& \mathbf{E}\left\{\left|\left(\int_{0}^{t} X_{n} d B\right)^{2}-\left(\int_{0}^{t} X d B\right)^{2}\right|\right\} \\
& \quad=\mathbf{E}\left\{\left|\left(\int_{0}^{t} X_{n} d B-\int_{0}^{t} X d B\right)\left(\int_{0}^{t} X_{n} d B+\int_{0}^{t} X d B\right)\right|\right\} \\
& \\
& \quad \leq \sqrt{\mathbf{E}\left\{\left(\int_{0}^{t}\left(X_{n}-X\right) d B\right)^{2}\right\}} \sqrt{\mathbf{E}\left\{\left(\int_{0}^{t}\left(X_{n}+X\right) d B\right)^{2}\right\}} \\
& \quad=\sqrt{\mathbf{E}\left\{\int_{0}^{t}\left(X_{n}(s)-X(s)\right)^{2} d s\right\} \sqrt{\mathbf{E}\left\{\int_{0}^{t}\left(X_{n}(s)+X(s)\right)^{2} d s\right\}}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

so that

$$
\int_{0}^{t} X_{n}(s)^{2} d s \rightarrow \int_{0}^{t} X(s)^{2} d s \quad \text { and } \quad\left(\int_{0}^{t} X_{n} d B\right)^{2} \rightarrow\left(\int_{0}^{t} X d B\right)^{2} \quad \text { as } n \rightarrow \infty
$$

for $t \in[0, T]$ in the sense of convergence in \mathbb{L}^{1}. Hence we may use Exercise 3 of Exercise Seesion 3 together with the assume proven martingale property when $X_{n} \in S_{T}$ to
conclude that

$$
\begin{aligned}
\mathbf{E}\left\{\left(\int_{0}^{t} X d B\right)^{2}-\int_{0}^{t} X(r)^{2} d r \mid \mathcal{F}_{s}\right\} & \leftarrow \mathbf{E}\left\{\left(\int_{0}^{t} X_{n} d B\right)^{2}-\int_{0}^{t} X_{n}(r)^{2} d r \mid \mathcal{F}_{s}\right\} \\
& =\left(\int_{0}^{s} X_{n} d B\right)^{2}-\int_{0}^{s} X_{n}(r)^{2} d r \\
& \rightarrow\left(\int_{0}^{s} X d B\right)^{2}-\int_{0}^{s} X(r)^{2} d r \text { as } n \rightarrow \infty
\end{aligned}
$$

for $0 \leq s<t \leq T$ in the sense of convergence in \mathbb{L}^{1}, thereby establishing the requested martingale property for $X \in E_{T}$.

Pick a grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$ and consider an $X \in S_{T}$ given by

$$
X(t)=I_{\{0\}}(t) \eta_{0}+\sum_{i=0}^{n-1} I_{\left(t_{i}, t_{i+1}\right]}(t) \xi_{i} \quad \text { for } t \in[0, T],
$$

where η_{0} is \mathcal{F}_{0}-measurable and ξ_{i} is $\mathcal{F}_{t_{i}}$-measurable for $i=0, \ldots, n-1$. Recall that

$$
\int_{0}^{t} X d B=\left\{\begin{array}{cl}
\sum_{i=0}^{m-1} \xi_{i}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)+\xi_{m}\left(B(t)-B\left(t_{m}\right)\right) & \text { for } t \in\left(t_{m}, t_{m+1}\right] \\
0 & \text { for } t=0
\end{array} .\right.
$$

In order to prove the martingale property

$$
\mathbf{E}\left\{\left(\int_{0}^{t} X d B\right)^{2}-\int_{0}^{t} X(r)^{2} d r \mid \mathcal{F}_{s}\right\}=\left(\int_{0}^{s} X d B\right)^{2}-\int_{0}^{s} X(r)^{2} d r
$$

for $0 \leq s<t \leq T$ we may without loss of generality assume that $s=t_{j}$ and $t=t_{k}$ for some $0 \leq j<k \leq n$ as the grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$ can otherwise be enriched to accomodate s and t without affecting the values of

$$
\left(\int_{0}^{t} X d B\right)^{2}-\int_{0}^{t} X(r)^{2} d r \quad \text { and } \quad\left(\int_{0}^{s} X d B\right)^{2}-\int_{0}^{s} X(r)^{2} d r .
$$

Here the random variable to the right is \mathcal{F}_{s}-measurable, and therefore simple algebraic manipulations show that the martingale property to be established holds if

$$
\begin{aligned}
& \mathbf{E}\left\{\left(\int_{0}^{t} X d B\right)^{2}-\left(\int_{0}^{s} X d B\right)^{2}-\int_{s}^{t} X(r)^{2} d r \mid \mathcal{F}_{s}\right\} \\
& \quad=\mathbf{E}\left\{\left(\int_{s}^{t} X d B\right)^{2}+2 \int_{0}^{s} X d B \int_{s}^{t} X d B-\int_{s}^{t} X(r)^{2} d r \mid \mathcal{F}_{s}\right\} \\
& \quad=0
\end{aligned}
$$

That this identity holds in turn follows from the facts that

$$
\mathbf{E}\left\{\int_{0}^{s} X d B \int_{s}^{t} X d B \mid \mathcal{F}_{s}\right\}=\left(\int_{0}^{s} X d B\right) \sum_{i=j}^{k-1} \mathbf{E}\left\{\xi_{i} \mathbf{E}\left\{\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right) \mid \mathcal{F}_{t_{i}}\right\} \mid \mathcal{F}_{s}\right\}=0
$$

and similarly

$$
\begin{aligned}
& \mathbf{E}\left\{\left(\int_{s}^{t} X d B\right)^{2} \mid \mathcal{F}_{s}\right\} \\
& \quad=\sum_{i=j}^{k-1} \mathbf{E}\left\{\xi_{i}^{2} \mathbf{E}\left\{\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)^{2} \mid \mathcal{F}_{t_{i}}\right\} \mid \mathcal{F}_{s}\right\} \\
& \quad+2 \sum_{j \leq i_{1}<i_{2} \leq k-1} \mathbf{E}\left\{\xi_{i_{1}} \xi_{i_{2}}\left(B\left(t_{i_{1}+1}\right)-B\left(t_{i_{1}}\right)\right) \mathbf{E}\left\{\left(B\left(t_{i_{2}+1}\right)-B\left(t_{i_{2}}\right)\right) \mid \mathcal{F}_{t_{i_{2}}}\right\} \mid \mathcal{F}_{s}\right\} \\
& \quad=\sum_{i=j}^{k-1} \mathbf{E}\left\{\xi_{i}^{2}\left(t_{i+1}-t_{i}\right)^{2} \mid \mathcal{F}_{s}\right\}+0 \\
& \quad=\mathbf{E}\left\{\int_{s}^{t} X(r)^{2} d r \mid \mathcal{F}_{s}\right\} .
\end{aligned}
$$

It is tempting to try to solve the exercise by means of applying Itô's formula, which readily gives

$$
\left(\int_{0}^{t} X d B\right)^{2}-\int_{0}^{t} X(s)^{2} d s=2 \int_{0}^{t}\left(\int_{0}^{s} X(r) d B(r)\right) X(s) d B(s) .
$$

Here we know that $\int_{0}^{s} X(r) d B(r)$ and $X(s)$ are both square-integrable. But this only implies that $\left(\int_{0}^{s} X(r) d B(r)\right) X(s)$ is integrable (rather than square-integrable) in general, and therefore we cannot conclude that the process on the right-hand side is a martingale form what we have learned so far.

Exercise 3. Prove Itô's formula Theorem 4.13 in Klebaner's book.
Solution. We shall prove that for a two times continuously differentiable function f it holds that

$$
f(B(t))=f(B(0))+\int_{0}^{t} f^{\prime}(B(r)) d B(r)+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(r)) d r \quad \text { for } t>0 .
$$

To that end we consider partitions $0=t_{0}<t_{1}<\ldots<t_{n}=t$ of the interval $[0, t]$ that becomes finer and finer so that $\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0$. By Taylor expansion we have

$$
f(B(t))-f(B(0))=\sum_{i=1}^{n} f\left(B\left(t_{i}\right)\right)-f\left(B\left(t_{i-1}\right)\right)
$$

$$
\begin{aligned}
=\sum_{i=1}^{n} & f^{\prime}\left(B\left(t_{i-1}\right)\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \\
& +\frac{1}{2} \sum_{i=1}^{n} f^{\prime \prime}\left(B\left(t_{i-1}\right)\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2} \\
& +\sum_{i=1}^{n} \int_{B\left(t_{i-1}\right)}^{B\left(t_{i}\right)}\left(B\left(t_{i}\right)-r\right)\left(f^{\prime \prime}(r)-f^{\prime \prime}\left(B\left(t_{i-1}\right)\right)\right) d r
\end{aligned}
$$

Here the first term on the right-hand side converges to $\int_{0}^{t} f^{\prime}(B) d B$ in probability as $f(B)$ is a continuous and adapted process. Moreover, recalling that the quadratic variation of B over an interval equals the length of that interval it follows that the second term on the right-hand side converges to $\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(r)) d r$ by means of introducing a second cruder grid $\left\{t_{j}^{\prime}\right\}_{j=1}^{m}$, approximating the value of $f^{\prime \prime}\left(B\left(t_{i-1}\right)\right)$ by $f^{\prime \prime}\left(B\left(t_{j-1}^{\prime}\right)\right)$ for an appropriate j, and sending first $\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0$ and then $\max _{1 \leq j \leq m} t_{j}^{\prime}-t_{j-1}^{\prime} \downarrow 0$ afterwards, as this makes it possible to replace $\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}$ with $t_{i}-t_{i-1}$ in the first limit as $\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0$ and the approximation of $f^{\prime \prime}\left(B\left(t_{i-1}\right)\right)$-values by $f^{\prime \prime}\left(B\left(t_{j-1}^{\prime}\right)\right)$ values is accurate in the second limit as $\max _{1 \leq j \leq m} t_{j}^{\prime}-t_{j-1}^{\prime} \downarrow 0$ by the continuity of $f^{\prime \prime}(B)$. Finally, the third term on the right-hand side is bounded by

$$
\begin{aligned}
& \sup _{r, s \in[0, T],|r-s| \leq \max _{1 \leq i \leq n}}\left|f^{\prime \prime}(B(r))-f^{\prime \prime}(B(s))\right| \sum_{i=1}^{n} \int_{B\left(t_{i-1}\right)}^{B\left(t_{i}\right)}\left(B\left(t_{i}\right)-r\right) d r \\
& \quad=\sup _{r, s \in[0, T],|r-s| \leq \max _{1 \leq i \leq n}} t_{i}-t_{i-1} \\
& \quad \rightarrow 0 \times \frac{t}{2} .
\end{aligned}
$$

Exercise 4. One can prove the following important generalization of Itô's formula Theorem 4.16 in Klebaner's book: For an Itô process $\{X(t)\}_{t \in[0, T]}$ all values of which belong to an open interval $I \subseteq \mathbb{R}$ with probability 1 and a two times continuously differentiable function $f: I \rightarrow \mathbb{R}$ it holds that

$$
d f(X(t))=f^{\prime}(X(t)) d X(t)+\frac{1}{2} f^{\prime \prime}(X(t)) d[X, X](t) \quad \text { for } t \in[0, T]
$$

Use this result to give a detailed proof of Theorem 5.3 in Klebaner's book.
Solution. Let $\{U(t)\}_{t \in[0, T]}$ be a strictly positive Itô process with probability 1 . Then we may apply the above mentioned generalized Itô formula to the function $Y(t)=$ $\log (U(t))-\log (U(0))$ to conclude that

$$
d Y(t)=\frac{d U(t)}{U(t)}-\frac{1}{2} \frac{d[U](t)}{U(t)^{2}}
$$

so that

$$
U(t) d\left(\log \left(\frac{U(t)}{U(0)}\right)+\frac{1}{2} \int_{0}^{t} \frac{d[U](r)}{U(r)^{2}}\right)=U(t) d\left(Y(t)+\frac{1}{2} \int_{0}^{t} \frac{d[U](r)}{U(r)^{2}}\right)=d U(t)
$$

This means that the Itô process

$$
\mathcal{L}(U(t)) \equiv \log \left(\frac{U(t)}{U(0)}\right)+\frac{1}{2} \int_{0}^{t} \frac{d[U](r)}{U(r)^{2}}
$$

has stochastic exponential $U(t)$ and therefore is the stochastic logarithm of $U(t)$. By multiplying both sides of the above equation by $1 / U(t)$ we also see that $\mathcal{L}(U(t))$ obeys the equation

$$
d \mathcal{L}(U(t))=\frac{1}{U(t)} d U(t), \quad \mathcal{L}(U(0))=0
$$

(Note that this SDE is not of diffusion type in general.)

Exercise 5. The filtration $\left\{\mathcal{F}_{t}\right\}$ that features in the construction of the Ito integral process need not necessarily be the filtration $\left\{\mathcal{F}_{t}^{B}\right\}$ generated by B itself, but can more generally be as in Remark 3.1 in Klebaner's book. In particular, if $\left\{B_{1}(t)\right\}_{t \geq 0}$ and $\left\{B_{2}(t)\right\}_{t \geq 0}$ are independent Brownian motions, then we may employ the filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ given by $\mathcal{F}_{t}=\sigma\left(\mathcal{F}_{t}^{B_{1}}, \mathcal{F}_{t}^{B_{1}}\right)$ for $t \geq 0$ to be able to simultaneuously consider Itô integral process (and therefore also SDE) with respect to both B_{1} and B_{2}.

The Nobel prize awarded Black-Scholes-Merton SDE

$$
d X(t)=r X(t) d t+\sigma X(t) d B(t) \quad \text { for } t>0, \quad X(0)=x_{0}
$$

for future values $\{X(t)\}_{t>0}$ of a financial asset with an uncertain rate of return might be generalized to a model that can much more accurately model real worls financial assets, such as e.g., stock prices as follows: With the notation from the previous paragraph, consider the SDE (not in general of diffusion type)

$$
d X(t)=r X(t) d t+\sigma(t) X(t) d B_{1}(t) \quad \text { for } t>0, \quad X(0)=x_{0}
$$

where the constant so called volatility parameter $\sigma \in \mathbb{R}$ of the Black-Scholes-Merton SDE has been replaced with a random volatility process $\{\sigma(t)\}_{t \geq 0}$ that can model a market that features a time variable uncertainty for the rate of the return. Solve this more general SDE when the volatility process $\{\sigma(t)\}_{t \geq 0}$ is given by the SDE

$$
d \sigma(t)=-\alpha \sigma(t) d t+\beta d B_{2}(t) \quad \text { for } t>0, \quad \sigma(0)=\sigma_{0}
$$

where $\alpha, \beta>0$ are positive real constants (as is r).
Solution. Identifying X as a stochastic exponential we get

$$
X(t)=x_{0} \exp \left\{r t-\frac{1}{2} \int_{0}^{t} \sigma(s)^{2} d s+\int_{0}^{t} \sigma(s) d B_{1}(s)\right\} \quad \text { for } t \geq 0
$$

(see the upper part of page 131 in Klebaner's book), where σ in turn is recognized as the solution to a Langevin type SDE

$$
\sigma(t)=\exp \left\{-\int_{0}^{t} \alpha(s) d s\right\}\left(\sigma_{0}+\beta \int_{0}^{t} \exp \left\{\int_{0}^{s} \alpha(r) d r\right\} d B_{2}(s)\right) \quad \text { for } t \geq 0
$$

(see the lower part of page 127 and the upper part of page 132 in Klebaner's book).

Exercise 6. Solve the SDE

$$
d X(t)=\left(\sqrt{1+X(t)^{2}}+\frac{X(t)}{2}\right) d t+\sqrt{1+X(t)^{2}} d B(t) \quad \text { for } t>0, \quad X(0)=0 .
$$

Solution. First notice that all conditions of Theorem 5.4 in Klebaner's book are satisfied, so that it is clear that the SDE has a well-defined and unique solution. Now, employing divine inspiration we readily arrive at the idea to try the transformation $Y(t)=\sinh ^{-1}(X(t))$. By an application of Itô's formula Theorem 4.16 in Klebaner's book we then get

$$
\begin{aligned}
d Y(t) & =\frac{1}{\sqrt{1+X(t)^{2}}} d X(t)-\frac{X(t)}{2\left(1+X(t)^{2}\right)^{3 / 2}} d[X, X](t) \\
& =d t+\frac{X(t)}{2 \sqrt{1+X(t)^{2}}} d t+d B(t)-\frac{X(t)}{2 \sqrt{1+X(t)^{2}}} d t \\
& =d t+d B(t),
\end{aligned}
$$

with the obvious solution $Y(t)=t+B(t)$ [remembering that $Y(0)=0]$. Hence the solution to the SDE must be $X(t)=\sinh (t+B(t))$. That this process X really solves the SDE is also easy to check by means of direct calculations using Itô's formula Theorem 4.18 in Klebaner's book together with the hyperbolic unit formula.

