TMS 165/MSA350 Stochastic Calculus Part I Fall 2011
Exercise session 6

Exercise 1. Exercise 1 in Stig Larsson’s lecture notes “Numerical Methods for Stochas-
tic ODEs”.

Solution. The task is to prove the estimate (8) given the conditions (1)-(5) and with
Gronwall’s lemma and Doob’s inequality at our disposal. To land the proof we will
assume that X € FEp, so that the It6 integral involved is a square-integrable martingale:
Without this additional assumption (which can be waived at the cost of involving the
much deeper Burkholder-Davis-Gundy inequality on page 201 in Klebaner’s book for
local martingales) we neither know that the It6 integral involved is a martingale or that
the isometry formula can be used, which is not what is really meant:) Now the proof is

just a version of that of Theorem 3, as we have
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Exercise 2. Exercise 2 in Larsson’s lecture notes.

Solution. Consider the operator Er>Y — G(Y) € Er given by

G(Y)(t) =X0+/OM(Y(T),T)CZT+/O o(Y(r),r)dB(r) for te[0,T].

Note that Exercise 1 ensures that G maps Ep on Ep. Further, note that Ep is a Banach



space when equipped with the norm || X|| = sup,c(o 77 /E{X(¢)?}. By a version of the

argument employed in the solution of Exercise 1 we have
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Hence G is a contraction so that the fixed point theorem for contarctions on Banach

spaces ensures that there exists a unique X € Er such that G(X) = X. This in turn is

of course a unique strong solution to the SDE (1).

Exercise 3. Exercise 3 in Larsson’s lecture notes.

Solution. By a version of the argument employed in the solution of Exercise 1 we have
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Exercise 4. Given some constants u, o € R, consider the SDE

dX(t) = pdt + o X(£)dB(t) for t€(0,T],  X(0)=X,.

(a) Show that the unique strong solution to this SDE is given by
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(b) Solve the SDE numerically for y=o0 =1, T'=10 and X, =0 by the Euler method.

Plot a sample path of the numerical solution and compare with the analytic solution.

Solution. (a) According to Theorem 5.4 in Klebaner’s book the SDE has a unique

strong solution. By application of It6’s formula Theorem 4.17 in Klebaner’s book with
¢
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(cf. Example 4.25 in Klebaner’s book) we further see that Y (£)Z(t) is the solution as
(Y (t)Z(t)) = Y (t)dZ(t) + Z(t) dY (t) + dY (t)dZ(t)
=pdt+Y()Z(t)odB(t)+ (ndt) (o dB(t))
— pdt+Y(£)Z(t) o dB(t).
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nzel= For [i =1; Xanal ytic={X0}; B={0}; IntB= {0}, i <steps, i++ AppendTo[B, B[[i]] +dB[[i]1]];
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Ti cks- {{ {1000, ""}, {2000, "2"}, {3000, ""}, {4000, "4"}, {5000, ""},
{6000, "6"}, {7000, ""}, {8000, "8"}, {9000, ""}, {10000, "10"}}, Autonatic}]
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Exercise 5. Exercise 4 in Stig Larsson’s lecture notes.

Solution. In order to prove (37) we note that the first equation in the proof of The-
orem 6 holds with T replaced by any s € [t,T]. As the expectation of the martingale
on the right-hand side of that equation is zero it follows that E{u(Z(s;z,t),s)} =
E{u(Z(t;x,t),t)} for s € [t,T]. Recalling that u(Z(t;x,t),t) = u(z,t) since Z(t;z,1t)
= x is the initial value of the SDE that is posted just before the proof, we arrive at

E{u(Z(s;x,t),s)} = u(x,t) for s € [t,T] [which is the version of (37) we prove].

Exercise 6. Exercise 5 in Larsson’s lecture notes.

Solution. This follows in the following elementary fashion from integration by parts
together with the fact that the functions ¢ and v involved have compact support in
R x (0,T) [that is, they are zero outside a closed and bounded set in R x (0, T)]:
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Note that it is enough to require that one of the functions ¢ and 1 have compact support

for the proof above to work: This will be important in the next exercise.

Exercise 7. Exercise 6 in Larsson’s lecture notes.



Solution. Using (39) and (40) we shall prove that u(z,t) given by (38) solves (34).
[Note that Theorem 6 ensures that solutions to (34) are unique when they exist.] First
note that (40) ensures that the terminal value u(x,T") is g(z) as required. In the language
of Exercise 5 in Larsson’s lecture notes we shall prove that L*u(z,t) =0 for u(z,t) given
by (38). To that end we note that Exercise 5 in Larsson’s lecture notes shows that for

any function ¢(z,t) that has compact support and satisfies Lo(x,t) =0 we have
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Assuming that the space of functions ¢(x,t) with compact support that satisfy Lo(z,t)
=0 is rich enough, this proves that L*u(z,t) =0.



