TMS 165/MSA350 Stochastic Calculus Part I Fall 2010 Written exam Thursday 13 January 20118.30 am - 1.30 pm

Teacher and Jour: Patrik Albin.
Aids: None.
Grades: 12000 points (40%) out of the full score 30000 points to pass the exam.
Motivations: All answers/solutions must be motivated.
Througout this exam $B=\{B(t)\}_{t \geq 0}$ is a Brownian motion.
Task 1. Find a random process (or function) with strictly positive variation but zero quadratic variation. Also, does there exist a random process (or function) with strictly positive quadratic variation but zero variation? (5000 points)

Task 2. Find the probability that $\mathbf{P}\left\{\int_{0}^{2} B(t) d t>\int_{0}^{1} B(t) d t\right\}$.
(5000 points)
Task 3. Find the quadratic variation process of $\left\{\sin (B(t)\}_{t \geq 0}\right.$.
(5000 points)
Task 4. Find the solution $\{X(t)\}_{t \geq 0}$ to the SDE

$$
d X(t)=X(t) \sin (B(t)) d B(t) \quad \text { for } t>0, \quad X(0)=1 .
$$

(5000 points)

Task 5. Let $X: \Omega \rightarrow \mathbb{R}$ be a standard normal distributed random variable defined on a sample space Ω with probability measure \mathbf{P} and σ-field of measurable events \mathcal{F}. Define a new probability measure \mathbf{Q} on \mathcal{F} under which X is unit-mean exponential distributed. (5000 points)

Task 6. Write down the Milstein method for numerical solution of the OrnsteinUhlenbeck (Langevin) SDE

$$
d X(t)=-\alpha X(t) d t+\sigma d B(t) \quad \text { for } t>0, \quad X(0)=x_{0}
$$

where $\alpha, \sigma>0$ are constants. Say as much as you can about the derivation of the method. (5000 points)

Good Luck!

TMS 165/MSA350 Stochastic Calculus Part I Fall 2010

Solutions to written exam Thursday 13 January 2011

Task 1. Any continuously differentiable function $f:[0, \infty) \rightarrow \mathbb{R}$ such that $f^{\prime}(0) \neq 0$ will have strictly positive variation $\int_{0}^{t}\left|f^{\prime}(s)\right| d s$ for $t>0$ but zero quadratic variation. Any random process (or function) that has zero variation must be constant and therefore also has zero quadratic variation.

Task 2. We have $\mathbf{P}\left\{\int_{0}^{2} B(t) d t>\int_{0}^{1} B(t) d t\right\}=\mathbf{P}\left\{\int_{1}^{2} B(t) d t>0\right\}=\frac{1}{2}$ as $\int_{1}^{2} B(t) d t$ is a zero-mean normal distributed random variable with strictly positive variance.

Task 3. According to Itô's formula we have

$$
\sin (B(t))=\int_{0}^{t} \cos (B(s)) d B(s)-\frac{1}{2} \int_{0}^{t} \sin (B(s)) d s \quad \text { for } t \geq 0
$$

As the second process on the right-hand side is a continuous finite variation process the quadratic variation process of $\sin (B)$ is equal to the quadratic variation process of the first process on the right-hand side, which in turn is $\left\{\int_{0}^{t} \cos (B(s))^{2} d s\right\}_{t \geq 0}$.

Task 4. The solution X is the stochastic exponential of the martingale $\left\{\int_{0}^{t} \sin (B(s))\right.$ $d B(s)\}_{t \geq 0}$, which in turn is given by $\left\{\exp \left[\int_{0}^{t} \sin (B(s)) d B(s)-\frac{1}{2} \int_{0}^{t} \sin (B(s))^{2} d s\right]\right\}_{t \geq 0}$.

Task 5. See Exercise 6 of Exercise Session 5.
Task 6. See Section 2.4 of Stig Larsson's lecture notes on numerical methods.

