TMS 165/MSA350 Stochastic Calculus Part I Fall 2012

Exercise session 2

Exercise 1. Prove Equations 2.17 and 2.21 in Klebaner's book for conditional expectations.

Solution. It is an easy exercise to see that any constant random variable (that is, a non-random random variable) is measurable wrt. the trivial σ-field $\{\emptyset, \Omega\}$. In particular, $\mathbf{E}\{X\}$ is $\{\emptyset, \Omega\}$-measurable. Further we have

$$
\int_{\emptyset} \mathbf{E}\{X\} d \mathbf{P}=0=\int_{\emptyset} X d \mathbf{P} \quad \text { and } \quad \int_{\Omega} \mathbf{E}\{X\} d \mathbf{P}=\mathbf{P}\{\Omega\} \mathbf{E}\{X\}=\mathbf{E}\{X\}=\int_{\Omega} X d \mathbf{P} .
$$

Hence $\mathbf{E}\{X\}$ fulfill the defining properties on page 44 in the book of being the conditional expectation $\mathbf{E}\{X \mid\{\emptyset, \Omega\}\}$. This establishes (2.17).

As for (2.21), as $\mathbf{E}\{X\}$ is $\{\emptyset, \Omega\}$-measurable it is measurable wrt. any other σ-field $\mathcal{G} \subseteq \mathcal{F}$ (as any such \mathcal{G} must contain $\{\emptyset, \Omega\}$). For X independent of \mathcal{G} we further have

$$
\int_{A} X d \mathbf{P}=\mathbf{E}\left\{I_{A} X\right\}=\mathbf{E}\left\{I_{A}\right\} \mathbf{E}\{X\}=\mathbf{P}\{A\} \mathbf{E}\{X\}=\int_{A} \mathbf{E}\{X\} d \mathbf{P} \quad \text { for } A \in \mathcal{G} .
$$

Hence $\mathbf{E}\{X\}$ fulfill the defining properties of being the conditional expectation $\mathbf{E}\{X \mid \mathcal{G}\}$.

Exercise 2. Consider a finite sample space $\Omega=\{1, \ldots, 2 n\}$ equipped with the σ-field \mathcal{F} consisting of all subsets of Ω together with the uniform probability measure \mathbf{P} on Ω assigning probability $1 /(2 n)$ to each outcome $\omega \in \Omega$. Calculate $\mathbf{E}\{X \mid \mathcal{G}\}$ for the random variable $X(\omega)=\omega$ and the σ-field $\mathcal{G}=\left\{\emptyset, A, A^{c}, \Omega\right\}$ where $A=\{1, \ldots, n\}$.

Solution. From intuitive reasoning we come up with the hypothesis that

$$
\mathbf{E}\{X \mid \mathcal{G}\}=\left\{\begin{array}{cl}
(n+1) / 2 & \text { for } \omega \in A \\
(3 n+1) / 2 & \text { for } \omega \in A^{c}
\end{array} .\right.
$$

That this really is correct follows from the fact that this random variable is \mathcal{G}-measurable and that by elementary calculations together with the uniformity of \mathbf{P} it satisfies

$$
\int_{B} \mathbf{E}\{X \mid \mathcal{G}\} d \mathbf{P}=\int_{B} X d \mathbf{P} \quad \text { for } B \in\left\{\emptyset, A, A^{c}, \Omega\right\}
$$

Exercise 3. Show that among all zero-mean stochastic processes $\{X(t)\}_{t \geq 0}$ with finite second moments $\mathbf{E}\left\{X(t)^{2}\right\}<\infty$ for $t \geq 0$, the class of martingales contain all processes
with independent increments and are all included among processes with uncorrelated increments.

Solution. For X zero-mean with independent increments we have

$$
\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}^{X}\right\}=\mathbf{E}\left\{X(t)-X(s) \mid \mathcal{F}_{s}^{X}\right\}+\mathbf{E}\left\{X(s) \mid \mathcal{F}_{s}^{X}\right\}=\mathbf{E}\{X(t)-X(s)\}+X(s)=X(s)
$$

for $s \leq t$, where we use the independent increments and (2.21) together with the fact that X is adapted to the σ-field $\left\{\mathcal{F}_{t}^{X}\right\}_{t \geq 0}$. Hence X is a martingale.

On the other hand, for X a zero-mean martingale we have

$$
\begin{aligned}
\mathbf{E}\{(X(u)-X(t))(X(s)-X(r))\} & =\mathbf{E}\left\{\mathbf{E}\left\{(X(u)-X(t))(X(s)-X(r)) \mid \mathcal{F}_{s}^{X}\right\}\right\} \\
& =\mathbf{E}\left\{(X(s)-X(r)) \mathbf{E}\left\{X(u)-X(t) \mid \mathcal{F}_{s}^{X}\right\}\right\} \\
& =\mathbf{E}\{(X(s)-X(r))(X(s)-X(s))\} \\
& =0
\end{aligned}
$$

for $0 \leq r \leq s \leq t \leq u$, where we made use of Equation 2.20 in Klebaner's book and the fact that X is adapted together with Equation 2.18 and the martingale property.

Exercise 4. Prove Equation 3.4 in Klebaner's book. (Note that it is assumed that $0<t_{1}<\ldots<t_{n}$ in this formula.)

Solution. We prove (3.4) by induction. Note that the property (3.4) when $n=1$ is just (3.3), which in turn is a rather elementary formula we proved during Lecture 4.

Now assume that (3.4) holds for $n=k$. Note that (3.4) for $n=k$ in turn means that $\left(B^{x}\left(t_{1}\right), \ldots, B^{x}\left(t_{k}\right)\right)$ has probability density function

$$
f_{\left(B^{x}\left(t_{1}\right), \ldots, B^{x}\left(t_{k}\right)\right)}\left(y_{1}, \ldots, y_{k}\right)=p_{t_{1}}\left(x, y_{1}\right) \prod_{i=2}^{k} p_{t_{i}-t_{i-1}}\left(y_{i-1}, y_{i}\right) \quad \text { for }\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k} .
$$

For the case when $n=k+1$ it therefore follows from conditioning on the value $\left(y_{1}, \ldots, y_{k}\right)$ of ($\left.B^{x}\left(t_{1}\right), \ldots, B^{x}\left(t_{k}\right)\right)$ and using independence of increments that

$$
\begin{aligned}
& \mathbf{P}\left\{\bigcap_{i=1}^{k+1}\left\{B^{x}\left(t_{i}\right) \leq x_{i}\right\}\right\} \\
= & \int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{k}} \mathbf{P}\left\{B^{x}\left(t_{k+1}\right)-B^{x}\left(t_{k}\right)+y_{k} \leq x_{k+1}\right\} f_{\left(B^{x}\left(t_{1}\right), \ldots, B^{x}\left(t_{k}\right)\right)}\left(y_{1}, \ldots, y_{k}\right) d y_{1} \ldots d y_{k} \\
= & \int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{k}} \Phi\left(\frac{x_{k+1}-y_{k}}{\sqrt{t_{k+1}-t_{k}}}\right) p_{t_{1}}\left(x, y_{1}\right) \prod_{i=2}^{k} p_{t_{i}-t_{i-1}}\left(y_{i-1}, y_{i}\right) d y_{1} \ldots d y_{k} \\
= & \int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{k}} \int_{-\infty}^{x_{k+1}} p_{t_{1}}\left(x, y_{1}\right) \prod_{i=2}^{k+1} p_{t_{i}-t_{i-1}}\left(y_{i-1}, y_{i}\right) d y_{1} \ldots d y_{k+1}
\end{aligned}
$$

[as $B^{x}\left(t_{k+1}\right)-B^{x}\left(t_{k}\right)$ is $\mathrm{N}\left(0, t_{k+1}-t_{k}\right)$-distributed]. This proves (3.4) by induction.

Exercise 5. Let ξ and η be independent standard normal random variables. Show that the process $\{X(t)\}_{t \in\{0,1\}}$ given by $X(0)=\operatorname{sign}(\eta) \xi$ and $X(1)=\operatorname{sign}(\xi) \eta$ is not Gaussian despite each of the process values $X(0)$ and $X(1)$ are standard Gaussian.

Solution. It is an elementary exercise to see that $X(0)$ and $X(1)$ are standard Gaussian (normal) distributed. Also note that

$$
X(0) X(1)=\operatorname{sign}(\eta) \xi \operatorname{sign}(\xi) \eta=|\xi||\eta| \geq 0
$$

However, if ($X(0), X(1)$) were bivariate standard Gaussian (as it must be if X is a Gaussian process), then the above non-negativity is possible if and only if $X(0)$ and $X(1)$ have perfect correlation 1 . But this is not true as
$\operatorname{Corr}\{X(0), X(1)\}=\operatorname{Cov}\{X(0), X(1)\}=\mathbf{E}\{X(0) X(1)\}=\mathbf{E}\{|\xi||\eta|\}=(\mathbf{E}\{|\xi|\})^{2}=\frac{2}{\pi}<1$ by elementary calculations [where we used that $X(0)$ and $X(1)$ are standard Gaussian].

Exercise 6. Prove that the finite dimensional distributions of a zero-mean Gaussian stochastic process $\{X(t)\}_{t \in T}$ are completely characterized by the covariance function of the process.

Solution. Given $t_{1}, \ldots, t_{n} \in T$, the distribution of the random variable $\left(X\left(t_{1}\right), \ldots\right.$, $\left.X\left(t_{n}\right)\right)$ is determined by its characteristic function (Fourier transform)

$$
\mathbf{E}\left\{\mathrm{e}^{i \sum_{j=1}^{n} a_{j} X\left(t_{j}\right)}\right\} \quad \text { for }\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}
$$

As $\sum_{j=1}^{n} a_{j} X\left(t_{j}\right)$ is a univariate zero-mean Gaussian random variable, that characteristic function in turn is equal to

$$
\exp \left[-\frac{1}{2} \operatorname{Var}\left\{\sum_{j=1}^{n} a_{j} X\left(t_{j}\right)\right\}\right]=\exp \left[-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left\{X\left(t_{i}\right), X\left(t_{j}\right)\right\}\right]
$$

which in turn obviously is determined by the covariance function of X.

